Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 934-937    DOI:
Original Articles |
Optimization Design of Helix Pitch for Efficiency Enhancement in the Helix Travelling Wave Tubes
DUAN Zhao-Yun;GONG Yu-Bin;LU Ming-Yi; WEI Yan-Yu;WANG Wen-Xiang
Vacuum Electronics National Lab, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
DUAN Zhao-Yun, GONG Yu-Bin, LU Ming-Yi et al  2008 Chin. Phys. Lett. 25 934-937
Download: PDF(283KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The output section of a helix travelling wave tube usually contains a helix pitch taper for high rf electron efficiency. By keeping the rf field as synchronous as possible with the decelerating electron beam bunches, the rf field can extract much more energy from the beam, and thus the maximum
electron efficiency can be realized. Recently, a global simulated annealing algorithm has been employed to design the helix pitch profile so as to improve the electron efficiency as much as possible. From the numerical results, it is concluded that the electron efficiency can be enhanced by about 4%--8%.
Keywords: 41.60.Bq      94.50.Pt     
Received: 18 June 2007      Published: 27 February 2008
PACS:  41.60.Bq (Cherenkov radiation)  
  94.50.Pt  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0934
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Zhao-Yun
GONG Yu-Bin
LU Ming-Yi
WEI Yan-Yu
WANG Wen-Xiang
[1] Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K and Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese)
[2] Liu G Z, Huang W H, Shao H and Xiao R Z 2006 Chin. Phys. 15 600
[3] Zhao D, Ding Y G, Sun P and Wang J H 2006 Acta Phys. Sin. 55 2389 (in Chinese)
[4] Xie H Q and Liu P K 2007 Chin. Phys. 16 766
[5] Rowe J E and Brackett C A 1965 IEEE Trans. Electron. Devices 12 441
[6] Wilson J D 1989 IEEE Trans. Electron. Devices 36 811
[7] Kosmahl H G and Peterson J C 1984 NASA TM83590
[8] Srivastava V, Carter R G, Sinha A K, and Joshi S N 2000 IEEETrans. Electron. Devices 47 2438
[9] Jung S S, Soukhov A V, Jia B F, and Park G S 2002 Appl. Phys.Lett. 80 3000
[10] Abe D K, Levush B, Antonsen Jr. T M, Whaley D R and Danly B G 2002 IEEE Trans. Plasma Sciences 30 1053
[11] Wilson J D 2001 IEEE Trans. Electron. Devices 48 95
[12] Duan Z Y, Gong Y B, Wang W X, Basu B N and Wei Y Y 2006 IEEE Trans. Electron. Devices 53 903
[13] Duan Z Y, Gong Y B, Wei Y Y, Wang W X and Huang M Z 2004 Int.J. Electron. 91 309
[14] Antonsen Jr. T M and Levush B 1998 IEEE Trans. PlasmaSciences 26 774
[15] Duan Z Y, Gong Y B, Wei Y Y and Wang W X 2007 Phys. Plasmas 14 093103
[16] Kirkpatrick S, Gelatt Jr C D and Vecchi M P 1983 Science 220 671
[17] Freund H P and Zaidman E G 2000 Phys. Plasmas 7 5182
Related articles from Frontiers Journals
[1] Hesham Fares, Enrica Chiadroni. Unified Analysis for Calculating the Incoherent Spontaneous Emission of Cooperative Radiations[J]. Chin. Phys. Lett., 2017, 34(11): 934-937
Viewed
Full text


Abstract