Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2683-2685    DOI:
Original Articles |
High-Speed InGaAs/InP Double Heterostructure Bipolar Transistor with High Breakdown Voltage
JIN Zhi1, SU Yong-Bo1, CHENG Wei1, LIU Xin-Yu1, XU An-Huai2, QI Ming2
1Institute of Microelectronics, Chinese Academy of Sciences, Beijing 1000292State Key Lab of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
JIN Zhi, SU Yong-Bo, CHENG Wei et al  2008 Chin. Phys. Lett. 25 2683-2685
Download: PDF(128KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract e design and fabricate an InGaAs/InP double heterostructure bipolar transistor (DHBT). The spike of the conduction band discontinuity between InGaAs base and InP collector is successfully eliminated by insertion of an InGaAs layer and two InGaAsP layers. The current gain cutoff frequency and maximum oscillation frequency are as high as 155 and 144GHz. The breakdown voltage in common-emitter configuration is more than 7V. The high cutoff frequency and high breakdown voltage make high-speed and
high-power circuits possible
Keywords: 85.30.Pq      71.55.Eq     
Received: 11 December 2007      Published: 26 June 2008
PACS:  85.30.Pq (Bipolar transistors)  
  71.55.Eq (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02683
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Zhi
SU Yong-Bo
CHENG Wei
LIU Xin-Yu
XU An-Huai
QI Ming
[1] Hafez W, Snodgrass W and Feng M 2005 Appl. Phys.Lett. 87 252109
[2] Su S, Liu X, Xu A et al 2006 Chin. J. Semiconduct. 27 792
[3] Dahlstrom M 2003 PhD Thesis (University ofCalifornia, Santa Barbara, USA)
[4] Jin Z and Liu X 2008 Sci. Chin. E 51 {(accepted)
[5] Jin Z, Prost W, Neumann S and Tegude F J 2004 Appl.Phys. Lett. 84 2910
[6] Rodwell M J W, Urteaga M, Mathew T et al 2001 IEEETrans. Electron. Devices 48 2606
[7] Liu W 1998 Handbook of III--V HeterojunctionBipolar Transistors (New York: Wiley-Interscience) p 722
[8] Kirk C T Jr 1962 IRE Trans. Electron. Devices 9 164
Related articles from Frontiers Journals
[1] JI Chang-Jian**, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng . Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy[J]. Chin. Phys. Lett., 2011, 28(9): 2683-2685
[2] DAI Ke-Hui, **, WANG Lian-Shan**, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, . Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(9): 2683-2685
[3] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 2683-2685
[4] U. Yesilgul**, F. Ungan, E. Kasapoglu, H. Sari, I. Sö, kmen . Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well[J]. Chin. Phys. Lett., 2011, 28(7): 2683-2685
[5] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 2683-2685
[6] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 2683-2685
[7] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 2683-2685
[8] HOU Qi-Feng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo . Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN[J]. Chin. Phys. Lett., 2011, 28(3): 2683-2685
[9] LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure[J]. Chin. Phys. Lett., 2010, 27(5): 2683-2685
[10] HOU Qi-Feng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, LI Jin-Min. Variation of Optical Quenching of Photoconductivity with Resistivity in Unintentional Doped GaN[J]. Chin. Phys. Lett., 2010, 27(5): 2683-2685
[11] PAN Yao-Bo, HAO Mao-Sheng, QI Sheng-Li, FANG Hao, ZHANG Guo-Yi. Effect of Interface Nanotexture on Light Extraction of InGaN-Based Green Light Emitting Diodes[J]. Chin. Phys. Lett., 2010, 27(3): 2683-2685
[12] YANG Ling, MA Jing-Jing, ZHU Cheng, HAO Yue, MA Xiao-Hua. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field[J]. Chin. Phys. Lett., 2010, 27(2): 2683-2685
[13] HUANG Jie, **, GUO Tian-Yi, ZHANG Hai-Ying, XU Jing-Bo, FU Xiao-Jun, YANG Hao, NIU Jie-Bin. InAlAs/InGaAs Pseudomorphic High Eelectron Mobility Transistors Grown by Molecular Beam Epitaxy on the InP Substrate[J]. Chin. Phys. Lett., 2010, 27(11): 2683-2685
[14] LIU Shu-Jian, YU Qing-Xuan, WANG Jian, LIAO Yuan, LI Xiao-Guang. Photoluminescence of a ZnO/GaN Heterostructure Interface[J]. Chin. Phys. Lett., 2009, 26(7): 2683-2685
[15] GE Ji, JIN Zhi, SU Yong-Bo, CHENG Wei, WANG Xian-Tai, CHEN Gao-Peng, LIU Xin-Yu. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect[J]. Chin. Phys. Lett., 2009, 26(7): 2683-2685
Viewed
Full text


Abstract