Chin. Phys. Lett.  1997, Vol. 14 Issue (4): 248-251    DOI:
Original Articles |
Statistical Properties of Type V intermittent Diffusion
WU Shun-guang1;ZHAO Shao-you1;QU Shi-xian2;GAO Zhan-hai3;HE Da-ren4,5,6
1Department of Physics, Northwest University, Xian 710069 2Department of Basic Courses, Xian Petroleum Institute, Xian 710061 3Department of Mathematics, Northwest University, Xian 710069 4CCAST (World Laboratory), P. O. Box 8730, Beijing 100080 5Department of Physics, Teachers College, Yangzhou University, Yangzhou 225002 6Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
WU Shun-guang, ZHAO Shao-you, QU Shi-xian et al  1997 Chin. Phys. Lett. 14 248-251
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In an unbounded system type V intermittency turns into an intermittent diffusion. The velocity autocorrelation function, its power spectrum S(ω), and the mean-square displacements σ2 ( t ) for the iterations inside channel are calculated both analytically and numerically. The diffusion as contrast with the conventional types of intermittent diffusion, is similar to a normal type.
Keywords: 05.45.+b     
Published: 01 April 1997
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I4/0248
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Shun-guang
ZHAO Shao-you
QU Shi-xian
GAO Zhan-hai
HE Da-ren
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 248-251
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 248-251
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 248-251
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 248-251
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 248-251
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 248-251
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 248-251
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 248-251
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 248-251
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 248-251
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 248-251
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 248-251
[13] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 248-251
[14] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 248-251
[15] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 248-251
Viewed
Full text


Abstract