Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 305-307    DOI:
Original Articles |
Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation
SU Ting1;GENG Xian-Guo 1;MA Yun-Ling 1,2
1 Department of Mathematics, Zhengzhou University, Zhengzhou 450052 2 Department of Mathematics, Shangqiu Normal University, Shangqiu 476000
Cite this article:   
Download: PDF(193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Wronskian form of N-soliton solution for the (2+1)-dimensional breaking soliton equation is obtained by resorting to the Hirota direct method.
Keywords: 03.30.Ik      05.45.Yv     
Received: 13 October 2006      Published: 24 February 2007
PACS:  03.30.Ik  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Calogero F and Degasperis A 1977 Nuovo Cimento B 31 201 Calogero F and Degasperis A 1977 Nuovo Cimento B 39 54
[2] Bogoyavlenskii O I 1990 Russian Math. Surveys 45 1
[3] Bogoyavlenskii O I 1990 Math. USSR Izvestiya 34 245
[4] Konopelchenko B G 1993 Solitons in Multidimensions(Singapore: World Scientific)
[5] Bogoyavlenskij O I 1993 Nonlinear Processes in Physicseds Fokes A S, Kaup D J, Newell A C and Zakharov V E (Berlin: Springer) p 67
[6] Li Y S and Zhang Y J 1993 J. Phys. A 26 7487
[7] Lou S Y 1993 J. Phys. A 26 L789
[8] Radha R and Lakshmanan M 1995 Phys. Lett. A 197 7
[9] Hirota R 1971 Phys. Rev. Lett. 27 1192
[10] Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57797
[11] Hirota R 2004 The Direct Methods in Soliton Theory(Cambridge: Cambridge University Press)
[12] Geng X G and Cao C W 2004 Chaos, Solitons and Fractals
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 305-307
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 305-307
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 305-307
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 305-307
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 305-307
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 305-307
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 305-307
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 305-307
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 305-307
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 305-307
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 305-307
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 305-307
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 305-307
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 305-307
[15] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 305-307
Viewed
Full text


Abstract