Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064211    DOI: 10.1088/0256-307X/26/6/064211
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Electrically Pumped Room-Temperature Pulsed InGaAsP-Si Hybrid Lasers Based on Metal Bonding
CHEN Ting1, HONG Tao1, PAN Jiao-Qing2, CHEN Wei-Xi1, CHENG Yuan-Bing2, WANG Yang2, MA Xiao-Bo3, LIU Wei-Li3, ZHAO Ling-Juan2, RAN Guang-Zhao1, WANG Wei2, QIN Guo-Gang1
1State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 1008712Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000833State Key Laboratory of Functional Materials for Informatics, Laboratory of Nano Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
CHEN Ting, HONG Tao, PAN Jiao-Qing et al  2009 Chin. Phys. Lett. 26 064211
Download: PDF(572KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9kA/cm2 and a slope efficiency of 0.02W/A. The 1542nm laser output exits mainly from the Si waveguide.

Keywords: 42.55.Px      42.60.By      42.82.Fv     
Received: 13 April 2009      Published: 01 June 2009
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.By (Design of specific laser systems)  
  42.82.Fv (Hybrid systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064211       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ting
HONG Tao
PAN Jiao-Qing
CHEN Wei-Xi
CHENG Yuan-Bing
WANG Yang
MA Xiao-Bo
LIU Wei-Li
ZHAO Ling-Juan
RAN Guang-Zhao
WANG Wei
QIN Guo-Gang
[1] Pavesi L and Lockwood D J 2004 Silicon Photonics(Berlin: Springer)
[2] Reed G T and Knights A P 2004 Silicon Photonics: AnIntroduction (Chichester: John Wiley {\& Sons Ltd)
[3] Windhorn T H et al 1984 Appl. Phys. Lett. 45309
[4] Sakai S et al 1986 Appl. Phys. Lett. 48 413
[5] Fischer R et al 1986 Appl. Phys. Lett. 481360
[6] Dupuis R D et al 1987 Appl. Phys. Lett. 50 407
[7] Razeghi M et al 1988 Appl. Phys. Lett. 53 2389
[8] Sugo M, Mori H, Tachikawa M, Itoh Y and Yamamoto M 1990 Appl. Phys. Lett. 57 593
[9] Roelkens G, Van Campenhout J, Brouckaert J, Van ThourhoutD, Baets R, Romeo P R, Regreny P et al 2007 Materials Today 10 36
[10] Yablonovitch E, Hwang D M, Gmitter T J, Florez L T andHarbison J P 1990 Appl. Phys. Lett. 56 2419
[11] Lo Y H, Bhat R, Hwang D M, Koza M A and Lee T P 1991 Appl. Phys. Lett. 58 1961
[12] Wada H and Kamijoh T 1996 IEEE Photon. Technol.Lett. 8 173
[13] Liang T, Guo X, Guan B L, Guo J, Gu X L, Lin Q M and ShenG D 2007 Chin. Phys. Lett. 24 1110
[14] Zhen W B, Liu W L, Song Z T, Feng S L, Zhu S F and Zhao BJ 2004 Chin. Phys. Lett. 21 2540
[15] Pasquariello D and Hjort K 2002 IEEE J. Sel. Top.Quantum Electron. 8 118
[16] Tong Q Y, Gan Q, Hudson G, Fountain G and Enquist P 2004 Appl. Phys. Lett. 84 732
[17] Morral A F i, Zahler J M, Atwater H A, Ahrenkiel S P andWanlass M W 2003 Appl. Phys. Lett. 83 5413
[18] Fang A W, Park H, Cohen O, Jones R, Paniccia M J andBowers J E 2006 Opt. Express 14 9203
[19] Fang A W, Park H, Kuo Y H, Jones R, Cohen O, Liang D,Raday O, Sysak M N, Paniccia M J and Bowers J E 2007 MaterialsToday 10 28
[20] Roelkens G, Van Thourhout D, Baets R, Notzel R and Smit M2006 Opt. Express 14 8154
[21] Van Campenhout J, Rojo-Romeo P, Regreny P, Seassal C, VanThourhout D, Verstuyft S, Cioccio L Di, Fedeli J M, Lagahe C andBaets R 2007 Opt. Express 15 6744
[22] Georgakilas A, Deligeorgis G, Aperathitis E, Cengher D,Hatzopoulos Z, Alexe M, Dragoi V, Gosele U, Kyriakis-Bitzaros E D,Minoglou K and Halkias G 2002 Appl. Phys. Lett. 81 5099
[23] Liu C C, Lin Y K, Houng M P and Wang Y H 2003 IEEETrans. Compon. Packag. Technol. 26 635
[24] Higurashi E, Imamura T, Suga T and Sawada R 2007 IEEE Photon. Technol. Lett. 19 1994
[25] Andrijasevic D, Austerer M, Andrews A M, Klang P, SchrenkW and Strasser G 2008 Appl. Phys. Lett. 92 051117
[26] Tsau C H, Spearing S M and Schmidt M A 2004 J.Microelectromech. Syst. 13 963
[27] Qin G G, Hong T, Chen T, Ran G Z and Chen W X Chinese Patent Pending: Fabrication Method of Metal BondingSi-Based Lasers
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 064211
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 064211
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 064211
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 064211
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 064211
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 064211
[7] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 064211
[8] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 064211
[9] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 064211
[10] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 064211
[11] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 064211
[12] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 064211
[13] TAO Ru-Mao, SI Lei, MA Yan-Xing, ZOU Yong-Chao, ZHOU Pu* . Tolerance on Tilt Error for the Incoherent Combination of Fiber Lasers in a Real Environment[J]. Chin. Phys. Lett., 2011, 28(7): 064211
[14] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 064211
[15] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 064211
Viewed
Full text


Abstract