FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Study on Coherence Time of a Light Field with Single Photon Counting |
LI Yuan, ZHANG Yu-Chi, ZHANG Peng-Fei, GUO Yan-Qiang, LI Gang, WANG Jun-Min, ZHANG Tian-Cai |
State Key Laboratory of Quantum Optics and Quantum Optics Device, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 |
|
Cite this article: |
LI Yuan, ZHANG Yu-Chi, ZHANG Peng-Fei et al 2009 Chin. Phys. Lett. 26 074205 |
|
|
Abstract The second-order degree of coherence of pseudo-thermal light and coherence time are experimentally studied via the Hanbruy-Brown-Twiss (HBT) scheme. The system consists of two non-photon-number-resolving single-photon-counting modules (SPCMs) operating in the Geiger mode. We investigate the coherence time of the incident beam for different spot sizes on a ground glass and speeds of a rotating ground glass. The corresponding coherence time can be obtained from Gaussian fitting for the measured second-order degree of coherence. The results show that the coherence time of measured pseudo-thermal light depends on the spot sizes and the rotating speeds of the ground glass. The maximum value of the second-order degree of coherence is reduced as the rotating speed decreases. This result can be well explained by the model of mixed thermal and coherent fields with different ratios.
|
Keywords:
42.50.Ar
42.60.Rn
|
|
Received: 12 January 2009
Published: 02 July 2009
|
|
|
|
|
|
[1] Brown H R and Twiss R Q 1956 Nature 177 27 [2] Arecchi F T, Bern\'{e A and Bulamacchi P 1966 Phys.Rev. Lett. 16 32 [3] Kimble H J, Dagenais M and Mandel L 1977 Phys. Rev.Lett. 39 691 [4] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J2003 Nature 425 268 [5] Grangier P, Sanders B and Vuckovic J 2004 New J.Phys. 6 85 [6] Knill E,Laflamme R and Milburn G J 2001 Nature 409 46 [7] Li G, Zhang T C, Li Y, and Wang J M 2005 Phys. Rev.A 71 023807 [8] Ribordy G, Gautier J D, Zbinden H and Gisin N 1998 Appl. Opt. 37 2272 [9] Sun Z, Ma H, Lei M, Wang D Liu Z, Yang H, Wu L, Zhai G andFeng J 2007 Chin. Phys. Lett. 24 574 [10] Kwiat P G Steinberg A M, Chiao R Y, Eberhard P H andPetroff M D 1993 Phys. Rev. A 48 R867 [11] Martienssen W and Spiller E 1964 Am. J. Phys. 32 919 [12] Arecchi F T 1965 Phys. Rev. Lett. 15 912 [13] Troup G J and Lyons S 1969 Phys. Lett. A 29705 [14]Beran M J and Parrent B 1964 Theory of PartialCoherence (Englewood Cliffs, N.J.: Prentice-Hall) p 95 [15] Asakura T 1970 Opto-Electronics 2 115 [16] Estes L E, Narduccit L M and Tuft R A 1971 J. Opt.Soc. Am. 61 1301 [17] Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601 [18] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E andLvgiato L A 2005 Phys. Rev. Lett. 94 183602 [19] Zhang D, Zhai Y, Wu L and Chen X 2005 Opt. Lett. 30 2354 [20] Xiong J, Cao D, Huang F, Li H, Sun X and Wang K 2005 Phys. Rev. Lett. 94 173601 [21] Mirande W and Weingartner I 1969 Phys. Lett. A 28 623 [22] Li Y, Li G, Zhang Y C, Wang X Y, Zhang J, Wang J M andZhang T C 2007 Phys. Rev. A 76 013829 [23] Li Y, Li G, Zhang Y C, Wang X Y, Wang J M andZhang T C2006 Acta Phys. Sin. 56 5779 (in Chinese) [24] Present G and Scarl D B 1972 App. Opt 11 120 [25] Loudon R 1992 The Quantum Theory of Light (Beijing:Advanced Education Press) (in Chinese) [26] Xiao M 2003 IEEE J. Sel. Top. Quantum Electron. 9 86 [27] Shen X, Bai Y, Qin T and Han S 2008 Chin. Phys.Lett. 25 3968 [28] Thompson N L 1991 Topics in FluorescenceSpectroscopy: Fluorescence Correlation Spectroscopy ed Lakowicz J R(New York: Plenum) vol 1 p 337 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|