Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120201    DOI: 10.1088/0256-307X/26/12/120201
GENERAL |
Perturbation to Noether Symmetry and Noether Adiabatic Invariants of General Discrete Holonomic Systems
ZHANG Ming-Jiang, FANG Jian-Hui, LU Kai, ZHANG Ke-Jun
College of Physics Science and Technology, China University of Petroleum, Dongying 257061
Cite this article:   
ZHANG Ming-Jiang, FANG Jian-Hui, LU Kai et al  2009 Chin. Phys. Lett. 26 120201
Download: PDF(288KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The perturbation to Noether symmetry and Noether adiabatic invariants of general discrete holonomic systems are studied. First, the discrete Noether exact invariant induced directly from the Noether symmetry of the system without perturbation is given. Secondly, the concept of discrete high-order adiabatic invariant is presented, the criterion of the perturbation to Noether symmetry is established, and the discrete Noether adiabatic invariant induced directly from the perturbation to Noether symmetry is obtained. Lastly, an example is discussed to illustrate the application of the results.
Keywords: 02.20.Sv      02.20.Qs      45.20.Jj     
Received: 06 July 2009      Published: 27 November 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ming-Jiang
FANG Jian-Hui
LU Kai
ZHANG Ke-Jun
[1] Noether A E 1918 Nachr. Akad. Wiss.G\"{ottingenMath. Phys. 2 235
[2] Mei F X 2004 Symmetries and Conserved Quantities ofConstrained Mechanical Systems (Beijing: Beijing Institute ofTechnology Press) (in Chinese)
[3] Luo S K, Zhang Y F and et al 2008 Advances in theStudy of Dynamics of Constrained Mechanics Systems (Beijing:Science Press) (in Chinese)
[4] Levi D and Yamilov R 1997 J. Math. Phys. 386648
[5] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A:Math. Gen. 33 8507
[6] Levi D, Tremblay S and Winternitz P 2001 J. Phys. A:Math. Gen. 34 9507
[7] Dorodnitsyn V 2001 Appl. Numer. Math. 39 307
[8] Shi S Y, Fu J L and Chen L Q 2008 Chin. Phys. B 17 385
[9] Shi S Y, Chen L Q and Fu J L 2008 Commun. Theor.Phys. 50 607
[10] Fu J L, Chen B Y and Xie F P 2008 Chin. Phys. B 17 4354
[11] Burgers J M 1917 Ann. Physik. 357 195
[12] Zhao Y Y and Mei F X 1999 Symmetries and Invariantsof Mechanical Systems (Beijing: Science Press) p164 (in Chinese)
[13] Chen X W and Mei F X 2000 Chin. Phys. 9 721
[14] Zhang Y 2002 Acta Phys. Sin. 51 2417 (inChinese)
[15] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[16] Zhang Y 2006 Chin. Phys. 15 1935
[17] Luo S K, Chen X W and Guo Y X 2007 Chin. Phys. 16 3176
[18] Ding N, Fang J H, Wang P and Zhang X N 2007 Commun.Theor. Phys. 48 19
[19] Luo S K 2007 Chin. Phys. Lett. 24 2463
[20] Zhang M J, Fang J H, Zhang X N and Lu K 2008 Chin.Phys. B 17 1957
[21] Wang P, Fang J H and Wang X M 2009 Chin. Phys.Lett. 26 034501
[22] Pang T, Fang J H, Zhang M J, Lin P and Lu K 2009 Chin. Phys. Lett. 26 070203
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 120201
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 120201
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 120201
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 120201
[5] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 120201
[6] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 120201
[7] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 120201
[8] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 120201
[9] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 120201
[10] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 120201
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 120201
[12] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 120201
[13] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 120201
[14] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 120201
[15] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 120201
Viewed
Full text


Abstract