Chin. Phys. Lett.  2006, Vol. 23 Issue (8): 2139-2142    DOI:
Original Articles |
Intermittency Growth in Fluid Turbulence
ZHU Jian-Zhou
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871
Cite this article:   
ZHU Jian-Zhou 2006 Chin. Phys. Lett. 23 2139-2142
Download: PDF(238KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement and phenomenological analyses of intermittency growth in an experimental turbulent pipe flow and numerical turbulence are performed, for which working definitions such as degree, increment, and growth rate of intermittency are introduced with the help of quasiscaling theory. The logarithmic--normal inertial scaling model is extended to quasiscaling as the second-order truncation of the Taylor expansion and is used for studying the intermittency growth problem. The extended self-similarity properties are shown to be not consistent with the monotonicity of the third order local quasiscaling exponent and the nonmonotonic behaviour of the intermittency growth rate as a result of bottleneck. Digestions of the results with scale-dependent multifractals are provided.
Keywords: 47.27.Gs      05.45.Df      05.10.Gg     
Published: 01 August 2006
PACS:  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
  05.45.Df (Fractals)  
  05.10.Gg (Stochastic analysis methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I8/02139
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Jian-Zhou
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 2139-2142
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 2139-2142
[3] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 2139-2142
[4] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 2139-2142
[5] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 2139-2142
[6] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 2139-2142
[7] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 2139-2142
[8] LIU Yu-Zhi, AN Hai-Long, ZHANG Su-Hua, YU Hui, ZHAN Yong, ZHANG Hai-Lin. Electrostatic Interactions Determining the Selectivity of KcsA Channel and Its Mutants[J]. Chin. Phys. Lett., 2010, 27(8): 2139-2142
[9] C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics[J]. Chin. Phys. Lett., 2010, 27(8): 2139-2142
[10] ZHU Jian-Zhou, Mark Taylor. Intermittency and Thermalization in Turbulence[J]. Chin. Phys. Lett., 2010, 27(5): 2139-2142
[11] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 2139-2142
[12] ZHAO Liang, LUO Xiao-Qin, WU Dan, ZHU Shi-Qun, GU Ji-Hua. Entropic Stochastic Resonance Driven by Colored Noise[J]. Chin. Phys. Lett., 2010, 27(4): 2139-2142
[13] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 2139-2142
[14] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 2139-2142
[15] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 2139-2142
Viewed
Full text


Abstract