Chin. Phys. Lett.  2001, Vol. 18 Issue (4): 476-478    DOI:
Original Articles |
New Method for Universal Models Composed of Arbitrary Boson Modes with Arbitrary Two-Body Interactions
YANG Xiao-Xue;WU Ying
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YANG Xiao-Xue, WU Ying 2001 Chin. Phys. Lett. 18 476-478
Download: PDF(205KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new method for the energy eigenvalue problem for boson systems with either weak or strong two-body interactions. It is also shown that this method is particularly simple and effective to obtain the explicit analytical expressions of energy eigenvalues and eigen-states for interacting harmonic oscillators especially when the number of the oscillators is huge.
Keywords: 03.75.Fi      05.30.Jp      67.40.Db     
Published: 01 April 2001
PACS:  03.75.Fi  
  05.30.Jp (Boson systems)  
  67.40.Db  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I4/0476
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Xiao-Xue
WU Ying
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 476-478
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 476-478
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 476-478
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 476-478
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 476-478
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 476-478
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 476-478
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 476-478
[9] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 476-478
[10] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 476-478
[11] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 476-478
[12] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 476-478
[13] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 476-478
[14] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 476-478
[15] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System[J]. Chin. Phys. Lett., 2009, 26(8): 476-478
Viewed
Full text


Abstract