Chin. Phys. Lett.  2001, Vol. 18 Issue (5): 625-627    DOI:
Original Articles |
Dynamical-Symmetry Breaking, Mechanism and Characterization Behaviour
XU Gong-Ou1,3;XU Ming-Jie2;XING Yong-Zhong3,6;YANG Ya-Tian4,5
1Department of Physics, Nanjing University, Nanjing 210093 2Department of Geoscience, Nanjing University, Nanjing 210093 3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000 4Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 5Department of Physics, Fujian Normal University, Fuzhou 350007 6Department of Physics, Tianshui Normal College, Tianshui 741000
Cite this article:   
XU Gong-Ou, XU Ming-Jie, XING Yong-Zhong et al  2001 Chin. Phys. Lett. 18 625-627
Download: PDF(323KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The integrability of quantum systems is charactized by the algebraic notion of dynamical symmetry, hence the nonintegrability of quantum systems should be discussed topologically in reference to corresponding integrable ones. A topological approach is proposed. The topological map in general is shown to be constituted of the piecewise diffeomorphic maps interrupted by sudden nondiffeomorphic maps and thus has the similar typical feature of stretching-folding stretching ...... as the Smale horse-shoe map.
Keywords: 03.65.-w      05.45.+b     
Published: 01 May 2001
PACS:  03.65.-w (Quantum mechanics)  
  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I5/0625
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Gong-Ou
XU Ming-Jie
XING Yong-Zhong
YANG Ya-Tian
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 625-627
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 625-627
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 625-627
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 625-627
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 625-627
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 625-627
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 625-627
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 625-627
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 625-627
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 625-627
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 625-627
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 625-627
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 625-627
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 625-627
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 625-627
Viewed
Full text


Abstract