Chin. Phys. Lett.  2002, Vol. 19 Issue (2): 153-155    DOI:
Original Articles |
Quantum Geometrical Phases and Mesoscopic Persistent Current
LI Hua-Zhong
Advanced Research Center and Department of Physics, Zhongshan University, Guangzhou 510275
Cite this article:   
LI Hua-Zhong 2002 Chin. Phys. Lett. 19 153-155
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We critically examine the concepts of quantum geometrical phases which have been widely applied to calculate mesoscopic persistent currents in the current literature. We point out that the method used in these calculations is essentially in conflict with the basic concepts of quantum geometrical phases. We give an example calculation of mesoscopic ring Aharonov-Anandan, Aharonov-Casher phases and persistent current to show some of the misconceptions involved in the current literature.
Keywords: 03.65.Bz     
Published: 01 February 2002
PACS:  03.65.Bz  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I2/0153
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hua-Zhong
Related articles from Frontiers Journals
[1] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 153-155
[2] ZHAN You-Bang, ZHANG Qun-Yong, WANG Yu-Wu, MA Peng-Cheng. Schemes for Teleportation of an Unknown Single-Qubit Quantum State by Using an Arbitrary High-Dimensional Entangled State[J]. Chin. Phys. Lett., 2010, 27(1): 153-155
[3] XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 153-155
[4] MA Shan-Jun. Optical Four-Wave Mixing Operator, Fresnel Operators and Three-Mode Entangled State Representation[J]. Chin. Phys. Lett., 2009, 26(6): 153-155
[5] SHAO Dan, SHAO Liang, SHAO Chang-Gui, NODA Huzio. Entanglement of Area Quantums in Quantized Space[J]. Chin. Phys. Lett., 2008, 25(1): 153-155
[6] LU Dao-Ming, ZHENG Shi-Biao. Establishment of Entanglement for Two Atoms Trapped in Two Distant Bad Cavities[J]. Chin. Phys. Lett., 2007, 24(3): 153-155
[7] JI Hua, ZHAN Xiao-Gui, ZENG Hao-Sheng. Controlled Teleportation of Multi-Qudit Quantum Information[J]. Chin. Phys. Lett., 2007, 24(10): 153-155
[8] ZHENG Shi-Biao. Teleportation of Quantum States through Mixed Entangled Pairs[J]. Chin. Phys. Lett., 2006, 23(9): 153-155
[9] YAO Chun-Mei. Quantum Remote Control of Unitary Operations on a Qubit of Pure Entangled States[J]. Chin. Phys. Lett., 2006, 23(3): 153-155
[10] ZHENG Shi-Biao. Production of Three-Dimensional Maximal Entanglement for Two Cavity Modes[J]. Chin. Phys. Lett., 2006, 23(3): 153-155
[11] ZHAN Xiao-Gui, LI Hong-Mei, ZENG Hao-Sheng. Teleportation of Multi-qudit Entangled States[J]. Chin. Phys. Lett., 2006, 23(11): 153-155
[12] CHEN Chang-Yong, , GAO Ke-Lin,. Construction of Controlled-NOT Gate with Thermal Ions[J]. Chin. Phys. Lett., 2005, 22(4): 153-155
[13] ZHENG Shi-Biao. Generation of Three-Dimensional Entangled States for Two Atoms Trapped in Different Cavities[J]. Chin. Phys. Lett., 2005, 22(12): 153-155
[14] ZHENG Shi-Biao. Universal Quantum Cloning Machine with Atoms in an Optical Cavity[J]. Chin. Phys. Lett., 2004, 21(9): 153-155
[15] ZHAO Hai-Jun, FANG Xi-Ming. Does the Quantum Player Always Win the Classical One?[J]. Chin. Phys. Lett., 2004, 21(8): 153-155
Viewed
Full text


Abstract