Chin. Phys. Lett.  2002, Vol. 19 Issue (2): 174-176    DOI:
Original Articles |
Phase-Locking in Coupled Chaotic Oscillators
MA Wen-Qi1;ZHAN Meng2;HE Dai-Hai2;WANG Xin-Gang2;HU Gang2
1Department of Physics, Beihua University, Jilin 132011 2Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
MA Wen-Qi, ZHAN Meng, HE Dai-Hai et al  2002 Chin. Phys. Lett. 19 174-176
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transition from the phase-unlocking state to phase-locking state is found at the desynchronization of synchronous chaos of coupled oscillators. In the phase-locking case, the motions of all oscillators are chaotic and desynchronous, however spatial ordering is identified in their phase distribution.
Keywords: 05.45.Xt      05.45.Jn     
Published: 01 February 2002
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I2/0174
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Wen-Qi
ZHAN Meng
HE Dai-Hai
WANG Xin-Gang
HU Gang
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 174-176
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 174-176
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 174-176
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 174-176
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 174-176
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 174-176
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 174-176
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 174-176
[9] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 174-176
[10] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 174-176
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 174-176
[12] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 174-176
[13] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 174-176
[14] SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye. Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks[J]. Chin. Phys. Lett., 2010, 27(8): 174-176
[15] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 174-176
Viewed
Full text


Abstract