Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 074301    DOI: 10.1088/0256-307X/27/7/074301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of the Nonlinearity of Loudspeakers on the Performance of Thermoacoustic Refrigerators Driven by Current and Voltage

FAN Li, ZHANG Shu-Yi, ZHANG Hui

Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
FAN Li, ZHANG Shu-Yi, ZHANG Hui 2010 Chin. Phys. Lett. 27 074301
Download: PDF(418KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influence of the nonlinearity of electrodynamic loudspeakers on the performance of thermoacoustic refrigerators with the loudspeakers as acoustic sources is studied by nonlinear equivalent circuit models of electrodynamic loudspeakers driven by current and voltage. The simulated results demonstrate that there are different nonlinear effects between current-drive and voltage-drive refrigerators, and the differences are mainly induced by the motional electromotive force caused by the coil moving in the magnetic field. With voltage driving, the influence of the nonlinearity of the loudspeaker on the diaphragm displacement and acoustic output power is much smaller than that with current driving. Therefore, considering the nonlinearity of the loudspeakers, a proper driving method must be chosen according to the practical applications although little difference is found with the linear models.

Keywords: 43.38.+n      43.25.+y     
Received: 14 December 2009      Published: 28 June 2010
PACS:  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
  43.25.+y (Nonlinear acoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/074301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/074301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Li
ZHANG Shu-Yi
ZHANG Hui
[1] Wheatley J C and Cox A 1985 Phys. Today 38 50
[2] Hofler T J 1988 Proc. the 5th Intl. Cryocooler Conf. (Monterey CA August 1988) p 93
[3] Swift G W 1988 J. Acoust. Soc. Am. 84 1145
[4] Mckelvey D et al 1995 J. Acoust. Soc. Am. 98 3540
[5] Wakeland R S 2000 J. Acoust. Soc. Am. 107 827
[6] Paek I et al 2007 Int. J. Refrigeration 30 1059
[7] Lihoreau B et al 2000 Acustica 86 363
[8] Marx D, Mao X et al 2006 Appl. Acoust. 67 402
[9] Tu Q, Gusev V et al 2005 Cryogenics 45 739
[10] Lihoreau B, Lotton P et al 2002 Acta Acustica 88 986
[11] Fan L et al 2005 Acta Acust. United Acust. 91 831
[12] Fan L et al 2006 J. Acoust. Soc. Am. 120 1381
[13] Fan L et al 2007 Appl. Phys. Lett. 91 241906
[14] Fan L et al 2008 J. Appl. Phys. 104 113506
[15] Klippel W 1992 J. Audio Eng. Soc. 40 483
Related articles from Frontiers Journals
[1] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 074301
[2] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun . Nondestructive Characterization of Quantitative Bonding Strength at a Bonded Solid-Solid Interface[J]. Chin. Phys. Lett., 2011, 28(8): 074301
[3] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 074301
[4] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 074301
[5] LE Yi, SHEN Yong**, XIA Jie . Calculation of Loudspeaker Cabinet Diffraction and Correction[J]. Chin. Phys. Lett., 2011, 28(10): 074301
[6] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 074301
[7] HUANG Bei, ZHENG Hai-Rong, ZHANG Dong. Asymmetric Oscillation and Acoustic Response from an Encapsulated Microbubble Bound within a Small Vessel[J]. Chin. Phys. Lett., 2010, 27(6): 074301
[8] XIANG Yan-Xun, XUAN Fu-Zhen, DENG Ming-Xi. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J]. Chin. Phys. Lett., 2010, 27(1): 074301
[9] Chung-Seok KIM, Cliff J. LISSENDEN. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. Chin. Phys. Lett., 2009, 26(8): 074301
[10] FAN Ting-Bo, LIU Zhen-Bo, ZHANG Zhe, ZHANG Dong, GONG Xiu-Fen. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound[J]. Chin. Phys. Lett., 2009, 26(8): 074301
[11] AN Zhi-Wu, WANG Xiao-Min, LI Ming-Xuan, DENG Ming-Xi, MAO Jie. Theoretical Development of Nonlinear Spring Models for the Second Harmonics on an Interface between Two Solids[J]. Chin. Phys. Lett., 2009, 26(11): 074301
[12] HU Yi, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographical Bottom under Vertical Vibration[J]. Chin. Phys. Lett., 2009, 26(11): 074301
[13] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun. A Unique Method to Describe the Bonding Strength in a Bonded Solid-S-olid Interface by Contact Acoustic Nonlinearity[J]. Chin. Phys. Lett., 2009, 26(1): 074301
[14] LIU Ming-He, ZHANG Dong, GONG Xiu-Fen. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle[J]. Chin. Phys. Lett., 2007, 24(8): 074301
[15] ZHANG Dong, ZHOU Lin, SI Li-Sheng, GONG Xiu-Fen. A Simple Model for Nonlinear Confocal Ultrasonic Beams[J]. Chin. Phys. Lett., 2007, 24(1): 074301
Viewed
Full text


Abstract