FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Opposite Goos-Hänchen Displacements for TE- and TM-Polarized Beams Transmitting through a Slab of Indefinite Metamaterial |
LIN Yan-He1, ZHU Qi-Biao1, ZHANG Yan1,2 |
1Department of Physics, Shanghai University, Shanghai 200444 2School of Communication and Information Engineering, Shanghai University, Shanghai 200072 |
|
Cite this article: |
LIN Yan-He, ZHU Qi-Biao, ZHANG Yan 2010 Chin. Phys. Lett. 27 074210 |
|
|
Abstract The Goos-Hänchen displacement of a light beam transmitting through an indefinite metamaterial slab is studied. The results indicate that the displacement would be negative or positive for different parameters, and the necessary conditions for negative or positive displacements are summarized. Due to the special anisotropic properties, the directions of displacements for different polarization beams are opposite by proper design. In addition, the simultaneously enhanced positive and negative displacements will appear at different resonant angles under consideration of the active slab. These phenomena could have convenient applications in optical devices.
|
Keywords:
42.25.Gy
42.68.Ay
78.20.Ci
|
|
Received: 08 March 2010
Published: 28 June 2010
|
|
PACS: |
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509 [2] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [3] Smolyaninov I I et al 2007 Science 315 1699 [4] Tichit P H, Moreau A and Granet G 2007 Opt. Express 15 14961 [5] Fan X, Wang G P et al 2006 Phys. Rev. Lett. 97 073901 [6] Bai Q, Chen J et al 2010 Opt. Express 18 2106 [7] Lindell I V, Tretyakov S A, Nikoskinen K I and IIvonen S 2001 Microwave Opt. Technol. Lett. 31 129 [8] Smith D R, Kolinko P and Schurig D 2004 J. Opt. Soc. Am. B 21 1032 [9] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405 [10] Grzegorczyk T M, Nikku M, Chen X, Wu B I and Kong J A 2005 IEEE Trans. Microwave Theor. Technol. 53 1443 [11] Smith D R, Schurig D, Mock J J, Kolinko P and Rye P 2004 Appl. Phys. Lett. 84 2244 [12] Degiron A, Smith D R, Mock J J, Justice B J and Gollub J 2007 Appl. Phys. A 87 321 [13] Lu W T and Sridhar S http://arxiv.org/abs/0902.4482 [14] Phua P B and Lai W J 2007 CLEO/Europe and IQEC 2007 Conference Digest (Washington DC: Optical Society of America) paper CC-10 http://www.opticsinfobase.org/ abstract.cfm?URI=CLEO_E-2007-CC_10 [15] Sakata T, Togo H and Shimokawa F 2000 Appl. Phys. Lett. 76 284 [16] Goos F and Hänchen H 1947 Ann. Phys. (Leipzig) 436 333 [17] Chang M C and Yang M F 2009 Phys. Rev. B 80 113304 [18] Xu G D, Zang T C and Pan T 2010 Phys. Rev. E 81 016603 [19] Li C F 2003 Phys. Rev. Lett. 91 133903 [20] Wang L G, Ikram M and Zubairy M S 2008 Phys. Rev. A 77 023811 [21] Chen X and Li C F 2004 Phys. Rev. E 69 066617 [22] Wang L G and Zhu S Y 2005 J. Appl. Phys. 98 043522 [23] Hu X, Huang Y, Zhang W, Qing D K and Peng J 2005 Opt. Lett. 30 899 [24] Da H X, Xu C and Li Z Y 2005 Phys. Rev. E 71 066612 [25] Zhong Y, Ran L and Cheng X 2006 Opt. Express 14 1161 [26] Artmann K 1948 Ann. Phys. (Leipzig) 2 87 [27] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376 [28] Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901 [29] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W and Zhang X 2010 Phys. Rev. Lett. 104 034501 [30] Bergamin L 2008 Phys. Rev. A 78 043825 [31] Pendry J B, Schurig D et al 2006 Science 312 1780 [32] Chen X and Li C F 2009 J. Opt. A: Pure Appl. Opt. 11 085004 [33] Kaiser R, Levy Y et al 1996 Pure Appl. Opt. 5 891 [34] Ding F G, Chen X and Li C F 2007 Chin. Phys. Lett. 24 1926 [35] Li C F and Wang Q 2004 Phys. Rev. E 69 055601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|