Chin. Phys. Lett.  2001, Vol. 18 Issue (3): 316-318    DOI:
Original Articles |
Exact Solution for Perk-Schultz Model with Boundary Impurities
LI Guang-Liang;YUE Rui-Hong;SHI Kang-Jie;HOU Bo-Yu
Institute of Modern Physics, Northwest University, Xi’an 710069
Cite this article:   
LI Guang-Liang, YUE Rui-Hong, SHI Kang-Jie et al  2001 Chin. Phys. Lett. 18 316-318
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Perk-Schultz model with SUq(m\n) spin boundary impurities is constructed by dressing the c-number reflecting K matrix with local L-matrix which acts non-trivially on an impurity Hilbert space. The eigenvalue of the transfer matrix and the corresponding Bethe ansatz equations with different c-number reflecting K-matrices are obtained by using the nested Bethe ansatz method (m ≠ n). When m=1,n=2, our results come back to that of super-symmetric t-J model with SUq(1\2) spin boundary impurities.
Keywords: 03.65.Fd      05.50.+q      04.20.Jb     
Published: 01 March 2001
PACS:  03.65.Fd (Algebraic methods)  
  05.50.+q (Lattice theory and statistics)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I3/0316
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Guang-Liang
YUE Rui-Hong
SHI Kang-Jie
HOU Bo-Yu
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 316-318
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 316-318
[3] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 316-318
[4] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 316-318
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 316-318
[6] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 316-318
[7] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 316-318
[8] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 316-318
[9] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 316-318
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 316-318
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 316-318
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 316-318
[13] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 316-318
[14] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 316-318
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 316-318
Viewed
Full text


Abstract