Chin. Phys. Lett.  2001, Vol. 18 Issue (7): 953-954    DOI:
Original Articles |
Yang-Lee Circle Theorem for an Antiferromagnetic Heisenberg Ladder
WANG Xian-Zhi
Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
WANG Xian-Zhi 2001 Chin. Phys. Lett. 18 953-954
Download: PDF(168KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Yang-Lee zeros of an antiferromagnetic Heisenberg ladder model are determined. It is found that if J4 ≤ 0 Yang-Lee zeros are located on the unit circle and on the negative real axis in the complex activity plane. In particular, if J4 ≤ 0 and 2J2 ≥ J4, Yang-Lee zeros are located on the unit circle and Yang-Lee circle theorem is valid. If J4 > 0, Yang Lee zeros are locted on some complicated curves.
Keywords: 64.60.Cn      75.10.Hk      75.10.Jm     
Published: 01 July 2001
PACS:  64.60.Cn (Order-disorder transformations)  
  75.10.Hk (Classical spin models)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I7/0953
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xian-Zhi
Related articles from Frontiers Journals
[1] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 953-954
[2] Sudha, **, B. G. Divyamani, A. R. Usha Devi, . Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution[J]. Chin. Phys. Lett., 2011, 28(2): 953-954
[3] Erhan Albayrak . Thermal Entanglement in a Two-Qutrit Spin-1 Anisotropic Heisenberg Model[J]. Chin. Phys. Lett., 2011, 28(2): 953-954
[4] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 953-954
[5] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 953-954
[6] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 953-954
[7] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 953-954
[8] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 953-954
[9] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 953-954
[10] GU Shi-Jian . Density-Functional Fidelity Approach to Quantum Phase Transitions[J]. Chin. Phys. Lett., 2009, 26(2): 953-954
[11] ZENG Tian-Hai, SHAO Bin, ZOU Jian. Effects of Intrinsic Decoherence on Information Transport in a Spin Chain[J]. Chin. Phys. Lett., 2009, 26(2): 953-954
[12] LI Da-Chuang, CAO Zhuo-Liang. Thermal Entanglement in the Anisotropic Heisenberg XYZ Model with Different Dzyaloshinskii-Moriya Couplings[J]. Chin. Phys. Lett., 2009, 26(2): 953-954
[13] DENG Ming. The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System[J]. Chin. Phys. Lett., 2009, 26(12): 953-954
[14] LI An-Kang, LU Jun-Zhe, MA Lei. Bond-Alternating Antiferromagnetic S=1/2 Heisenberg Ladder with Ferromagnetic Diagonal Coupling[J]. Chin. Phys. Lett., 2009, 26(12): 953-954
[15] LEI Xiao-Wei, ZHAO Xiao-Yu. Dynamic Simulation of Kosterlitz-Thouless Transition in Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2009, 26(1): 953-954
Viewed
Full text


Abstract