Chin. Phys. Lett.  2004, Vol. 21 Issue (2): 239-242    DOI:
Original Articles |
Evolution and Collision of Bose-Condensed Gases in an Infinitely Deep Square Well
XU Zhi-Jun;LIU Shu-Juan;HUANG Lin;WU Qiang;XIONG Hong-Wei
Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310032
Cite this article:   
XU Zhi-Jun, LIU Shu-Juan, HUANG Lin et al  2004 Chin. Phys. Lett. 21 239-242
Download: PDF(343KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The evolution and collision of Bose-condensed gases in one-dimensional optical lattices are investigated in the presence of an infinitely deep square well created by two far-off resonant laser beams. The two far-off resonant laser beams are superimposed on the combined potential consisting of a magnetic trap and one-dimensional optical lattices. After the combined potential is switched off, the analytical result of the evolution of the density distribution of the Bose-condensed gas is given by using the propagator method. The collisions between the condensate and the infinitely deep square well are shown in the present work.
Keywords: 03.75.Fi      05.30.Jp     
Published: 01 February 2004
PACS:  03.75.Fi  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I2/0239
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Zhi-Jun
LIU Shu-Juan
HUANG Lin
WU Qiang
XIONG Hong-Wei
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 239-242
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 239-242
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 239-242
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 239-242
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 239-242
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 239-242
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 239-242
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 239-242
[9] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 239-242
[10] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 239-242
[11] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 239-242
[12] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 239-242
[13] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 239-242
[14] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 239-242
[15] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System[J]. Chin. Phys. Lett., 2009, 26(8): 239-242
Viewed
Full text


Abstract