Chin. Phys. Lett.  2003, Vol. 20 Issue (1): 83-86    DOI:
Original Articles |
Bifurcation Behaviour in the Reverse-Flow Boundary Layer with Special Injection or Suction
ZHENG Lian-Cun1;ZHANG Xin-Xin2;HE Ji-Cheng3
1Department of Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083 2Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083 3Department of Thermal Engineering, Northeastern University, Shenyang 110006
Cite this article:   
ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng 2003 Chin. Phys. Lett. 20 83-86
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bifurcation solutions are numerically presented for reverse flow boundary layer equations with special suction/injection by utilizing similarity transformation and shooting technique. The results indicate that both superior solution and inferior solution are noticeable. The skin friction and shear stress for the superior solution decrease with the increases of the ratio of surface velocity to free stream velocity and suction/injection. The behaviour is opposite to that for the inferior solution. Both the skin frictions for the superior and inferior solutions decrease with the increase of the power law parameter. The inferior solution approaches the superior solution with the increase of the velocity ratio and suction/injection. When power law is unit and suction/injection is zero, the superior solution approaches the classical Blasius solution as the velocity ratio approaches zero.


Keywords: 47.32.Ff      47.50.+d      47.55.Mh     
Published: 01 January 2003
PACS:  47.32.Ff (Separated flows)  
  47.50.+d  
  47.55.Mh  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I1/083
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Lian-Cun
ZHANG Xin-Xin
HE Ji-Cheng
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 83-86
[2] YANG Wen-Chao,WANG Hui,YANG Jian-Ting,YANG Ji-Ming**. Characterization of the Flow Separation of a Variable Camber Airfoil[J]. Chin. Phys. Lett., 2012, 29(4): 83-86
[3] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 83-86
[4] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 83-86
[5] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 83-86
[6] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 83-86
[7] WANG Jin-Jun, ZHANG Wang. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings[J]. Chin. Phys. Lett., 2008, 25(7): 83-86
[8] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 83-86
[9] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 83-86
[10] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 83-86
[11] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 83-86
[12] ZHENG Lian-Cun, ZHANG Xin-Xin, MA Lian-Xi. Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube[J]. Chin. Phys. Lett., 2008, 25(1): 83-86
[13] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 83-86
[14] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 83-86
[15] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 83-86
Viewed
Full text


Abstract