Chin. Phys. Lett.  2004, Vol. 21 Issue (10): 1869-1872    DOI:
Original Articles |
Decay Rate of Energy Eigenfunctions in Classically Energetically Inaccessible Regions
WANG Wen-Ge
Department of Physics, Southeast University, Nanjing 210096 Department of Physics, National University of Singapore, 117542 Singapore
Cite this article:   
WANG Wen-Ge 2004 Chin. Phys. Lett. 21 1869-1872
Download: PDF(315KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Classically energetically inaccessible parts of energy eigenfunctions in configuration space are studied by making use of a generalization of Brillouin--Wigner perturbation theory. Approximate formulas are proposed for describing local decaying rate of this part of energy eigenfunctions, which are useful in the study of quantum phenomena,such as tunnelling effect, and are tested in an anharmonic oscillator.
Keywords: 03.65.-w     
Published: 01 October 2004
PACS:  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I10/01869
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wen-Ge
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1869-1872
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1869-1872
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1869-1872
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1869-1872
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1869-1872
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1869-1872
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1869-1872
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1869-1872
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 1869-1872
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1869-1872
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 1869-1872
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1869-1872
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 1869-1872
[14] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 1869-1872
[15] XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics[J]. Chin. Phys. Lett., 2010, 27(9): 1869-1872
Viewed
Full text


Abstract