Chin. Phys. Lett.  2003, Vol. 20 Issue (5): 605-607    DOI:
Original Articles |
Berry’s Phase in Noncommutative Spaces
S. A. Alavi
High Energy Physics Division, Department of Physics, University of Helsinki, Finland Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
Cite this article:   
S. A. Alavi 2003 Chin. Phys. Lett. 20 605-607
Download: PDF(193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the perturbative aspects of noncommutative quantum mechanics. Then we study Berry's phase in the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics, which depend on the parameter of space/space noncommutativity.

Keywords: 03.65.-w      03.65.Vf     
Published: 01 May 2003
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I5/0605
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. A. Alavi
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 605-607
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 605-607
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 605-607
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 605-607
[5] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 605-607
[6] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 605-607
[7] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 605-607
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 605-607
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 605-607
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 605-607
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 605-607
[12] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 605-607
[13] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 605-607
[14] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 605-607
[15] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 605-607
Viewed
Full text


Abstract