Chin. Phys. Lett.  2003, Vol. 20 Issue (5): 622-625    DOI:
Original Articles |
Dynamic Scaling Behaviour in (2+1)-Dimensional Kuramoto-Sivashinsky Model
QI Hong-Ji1;JIN Yong-Hao1;CHENG Chuan-Fu1;HUANG Li-Hua2;YI Kui1,SHAO Jian-Da1
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Laser Technology & Engineering Research Institute, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
QI Hong-Ji, JIN Yong-Hao, CHENG Chuan-Fu et al  2003 Chin. Phys. Lett. 20 622-625
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the evolution of (2+1)-dimensional surface morphology in the Kuramoto-Sivashinsky (K-S) model by using the numerical simulation approach. The results show that the surface morphology has the self-affine fractal properties and exhibits cellular structure after long time growth. With numerical correlation analysis, we explicitly observe the dynamic scaling characteristics and obtain the roughness exponent to be 0.77±0.07, the growth exponent to be 0.28 and 0.43, and the dynamic exponents 0.31 and 0.46, for the early times and later times. The simulating results are consistent with the theoretical values in the K-S model.

Keywords: 05.45.Pq      02.30Jr      64.60.Ht      68.35.-p     
Published: 01 May 2003
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  02.30Jr  
  64.60.Ht (Dynamic critical phenomena)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I5/0622
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Hong-Ji
JIN Yong-Hao
CHENG Chuan-Fu
HUANG Li-Hua
YI Kui
SHAO Jian-Da
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 622-625
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 622-625
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 622-625
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 622-625
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 622-625
[6] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 622-625
[7] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 622-625
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 622-625
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 622-625
[10] K. Iqbal, A. Basit** . A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice[J]. Chin. Phys. Lett., 2011, 28(4): 622-625
[11] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 622-625
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 622-625
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 622-625
[14] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 622-625
[15] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 622-625
Viewed
Full text


Abstract