Chin. Phys. Lett.  2003, Vol. 20 Issue (4): 486-488    DOI:
Original Articles |
One-Turn Map of Storage Ring with Insertion Devices
LI Yong-Jun
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029
Cite this article:   
LI Yong-Jun 2003 Chin. Phys. Lett. 20 486-488
Download: PDF(172KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering that the one-turn map can provid a useful and powerful tool to understand the nonlinear dynamics in a designing storage ring dedicated to synchrotron radiation and in a damping ring used as the pre-injector of linear collider, we first expand the Hamiltonian of a charged particle moving along the insertion device (ID) axis to the fourth-order Taylor series, and then construct a second-order symplectic integrator using the Lie map product for the particle passing through one period of the ID. The one-turn map can be obtained by concatenating the Lie map of the whole ID and the rest part of ring.


Keywords: 29.20.Dh      41.85.Lc      02.20.Sv     
Published: 01 April 2003
PACS:  29.20.Dh  
  41.85.Lc (Particle beam focusing and bending magnets, wiggler magnets, and quadrupoles)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I4/0486
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yong-Jun
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 486-488
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 486-488
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 486-488
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 486-488
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 486-488
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 486-488
[7] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 486-488
[8] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 486-488
[9] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 486-488
[10] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 486-488
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 486-488
[12] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 486-488
[13] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 486-488
[14] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 486-488
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 486-488
Viewed
Full text


Abstract