Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1339-1341    DOI:
Original Articles |
Thermodynamics Properties of Mesoscopic Quantum Nanowire Devices
Attia A. AwadAlla1;Adel H. Phillips2
1Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt2Department of Physics and Department of Mathematics, Faculty of Engineering, Ain Shams University, Egypt
Cite this article:   
Attia A. AwadAlla, Adel H. Phillips 2007 Chin. Phys. Lett. 24 1339-1341
Download: PDF(208KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the thermodynamics properties of mesoscopic quantum nanowire devices, such as the effect of electron-phonon relaxation time, Peltier coefficient, carrier concentration, frequency of this field, and channel width. The influence of time-varying fields on the transport through such device has been taken into consideration. This device is modelled as nanowires connecting to two reservoirs. The two-dimensional electron gas in a GaAs--AlGaAs heterojunction has a Fermi wave length which is a hundred times larger than that in a metal. The results show the oscillatory behaviour of dependence of the thermo power on frequency of the induced field. These
results agree with the existing experiments and may be important for
electronic nanodevices.
Keywords: 73.23.-b      73.40.-c      73.63.-b      85.35.-p     
Received: 27 January 2007      Published: 23 April 2007
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.40.-c (Electronic transport in interface structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.35.-p (Nanoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01339
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Attia A. AwadAlla
Adel H. Phillips
[1] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
[2] Atshuler B L, Lee P A and Webb R A 1991 Mesoscopic Phenomenain Solids (Amsterdam: Elsevier)
[3] Dikin D A, Jung S and Chandrasekhar V 2001 Phys. Rev. B 65 012511
[4] Bogachek E N, Scherbakov A G and Landman U 1996 Phys.Rev. B 54 R11094
[5] Zhou F, Seol J H, Moore A L, Ye Q L and Scheffler R 2006 J.Phys.: Condens. Matter 18 9651
[6] Butcher P N 1990 J. Phys. Condens. Matter 2 4869
[7] De Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[8] Molenkamp L W, Gravier T, van Houten H, Buijk O J A, Mabesoone M AA and Foxon C T 1992 Phys. Rev. Lett. 68 3765
[9] Aly A H and Phillips A H 2005 Appl. Sci. 7 10
[10] Awad Alla A A 2006 Appl. Sci. 8 23
[11] Awad Alla A A and Phillips A H 2006 Int. J. Mod. Phys. B(accepted)
[12] Deutscher G and Feinberg D 2000 Appl. Phys. Lett. 76487
[13] Aly A H, AwadAlla A A, Phillips A H and Atallah A S 2006 Int.J. Math. Comput. Sci. 1 173
[14] AwadAlla A A, Aly A H and Phillips A H 2007 Int. J. Nanosci. 6 41
[15] Fujisawa T, Tokura Y and Hirayama Y 2001 Phys. Rev. B 63 081304
[16] Asano Y and Kato T 2000 Jpn. J. Phys. Soc. 69 1125
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 1339-1341
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 1339-1341
[3] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 1339-1341
[4] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 1339-1341
[5] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 1339-1341
[6] OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua . Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study[J]. Chin. Phys. Lett., 2011, 28(4): 1339-1341
[7] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 1339-1341
[8] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1339-1341
[9] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 1339-1341
[10] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 1339-1341
[11] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 1339-1341
[12] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 1339-1341
[13] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 1339-1341
[14] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 1339-1341
[15] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 1339-1341
Viewed
Full text


Abstract