Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1444-1447    DOI:
Original Articles |
A Hierarchy of Differential-Difference Equations and Their Integrable Couplings
LUO Lin 1,2;FAN En-Gui1
1School of Mathematics, Fudan University, Shanghai 2004332Department of Mathematics, Xiaogan University, Xiaogan 432100
Cite this article:   
LUO Lin, FAN En-Gui 2007 Chin. Phys. Lett. 24 1444-1447
Download: PDF(203KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Starting from a discrete spectral problem, the corresponding hierarchy of nonlinear differential-difference equation is proposed. It is shown that the hierarchy possesses the bi-Hamiltionian structures. Further, two integrable coupling systems for the hierarchy are constructed through enlarged Lax pair method.
Keywords: 02.90.+p      05.45.Yv     
Received: 11 April 2007      Published: 17 May 2007
PACS:  02.90.+p (Other topics in mathematical methods in physics)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01444
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Lin
FAN En-Gui
[1] Ablowitz M R and Segur H 1981 Soliton and the InverseScattering Transformation (Philadelphia, PA: SIAM)
[2] Schilling R J 1989 J. Math. Phys. 30 1487
[3] Merola I, Ragnisco O and Tu G Z 1994 Inverse Problems 10 1315
[4] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903
[5] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen. 37 1323
[6] Sun Y P, Chen D Y and Xu X X 2006 NonlinearAnalysis 64 2604
[7] Ma W X 2003 Phys. Lett. A 316 72
[8] Ma W X and Fuchssteiner B 1996 Chaos, Solitons andFractals 7 1227
[9] Zhou Z X 2002 J. Math. Phys. 43 5002
[10] Cao C W1999 J. Math. Phys. 40 3948
[11] Cao C W, Geng X G and Wang H Y 2002 J. Math. Phys. 43 621
[12] Wu Y T and Geng X G 1998 J. Phys. A: Math. Gen. 31 L677
[13] Xu X X, Yang H X and Sun Y P 2006 Mod. Phys.Lett. B 20 1
[14] Ma W X 2005 J. Math. Phys. 46 1
[15] Ma W X and Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125
[16] Guo F K and Zhang Y F 2006 Commun. Theor. Phys. 45 799
[17] Zhang Y F, Yan Q Y and Xu Y C 2004 Ann. Diff. Eqs. 20 423
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1444-1447
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1444-1447
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1444-1447
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1444-1447
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1444-1447
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1444-1447
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1444-1447
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1444-1447
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1444-1447
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1444-1447
[11] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1444-1447
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1444-1447
[13] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1444-1447
[14] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1444-1447
[15] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 1444-1447
Viewed
Full text


Abstract