Original Articles |
|
|
|
|
A Hierarchy of Differential-Difference Equations and Their Integrable Couplings |
LUO Lin 1,2;FAN En-Gui1 |
1School of Mathematics, Fudan University, Shanghai 2004332Department of Mathematics, Xiaogan University, Xiaogan 432100 |
|
Cite this article: |
LUO Lin, FAN En-Gui 2007 Chin. Phys. Lett. 24 1444-1447 |
|
|
Abstract Starting from a discrete spectral problem, the corresponding hierarchy of nonlinear differential-difference equation is proposed. It is shown that the hierarchy possesses the bi-Hamiltionian structures. Further, two integrable coupling systems for the hierarchy are constructed through enlarged Lax pair method.
|
Keywords:
02.90.+p
05.45.Yv
|
|
Received: 11 April 2007
Published: 17 May 2007
|
|
PACS: |
02.90.+p
|
(Other topics in mathematical methods in physics)
|
|
05.45.Yv
|
(Solitons)
|
|
|
|
|
[1] Ablowitz M R and Segur H 1981 Soliton and the InverseScattering Transformation (Philadelphia, PA: SIAM) [2] Schilling R J 1989 J. Math. Phys. 30 1487 [3] Merola I, Ragnisco O and Tu G Z 1994 Inverse Problems 10 1315 [4] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903 [5] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen. 37 1323 [6] Sun Y P, Chen D Y and Xu X X 2006 NonlinearAnalysis 64 2604 [7] Ma W X 2003 Phys. Lett. A 316 72 [8] Ma W X and Fuchssteiner B 1996 Chaos, Solitons andFractals 7 1227 [9] Zhou Z X 2002 J. Math. Phys. 43 5002 [10] Cao C W1999 J. Math. Phys. 40 3948 [11] Cao C W, Geng X G and Wang H Y 2002 J. Math. Phys. 43 621 [12] Wu Y T and Geng X G 1998 J. Phys. A: Math. Gen. 31 L677 [13] Xu X X, Yang H X and Sun Y P 2006 Mod. Phys.Lett. B 20 1 [14] Ma W X 2005 J. Math. Phys. 46 1 [15] Ma W X and Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125 [16] Guo F K and Zhang Y F 2006 Commun. Theor. Phys. 45 799 [17] Zhang Y F, Yan Q Y and Xu Y C 2004 Ann. Diff. Eqs. 20 423 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|