Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1805-1808    DOI:
Original Articles |
A Theoretical Scheme for Entanglement Transfer under Intensity-Dependent Couplings
XIONG Heng-Na;GUO Hong
College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079
Cite this article:   
XIONG Heng-Na, GUO Hong 2007 Chin. Phys. Lett. 24 1805-1808
Download: PDF(242KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer between the field and the atoms has an exact period for any given squeezing. We also find that the maximum achievable entanglement of the atomic subsystem is a simple increasing function of r. For sufficiently large squeezing parameter r, it is possible for the atoms to be entangled into a
Bell state at half the periodic time points.
Keywords: 03.67.Mn      42.50.Dv      03.65.Ud     
Received: 04 April 2007      Published: 25 June 2007
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01805
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIONG Heng-Na
GUO Hong
[1] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
[2]Paternostro M et al %, Son W, Kim M S, Falci G and Palma G M2004 Phys. Rev. A 70 022320
[3]Paternostro M et al %, Son W and Kim M S2004 Phys. Rev. Lett. 92 197901
[4]Zou J et al %, Jun G L, Bin S, Jian L and Qian S L2006 Phys. Rev. A 73 042319
[5]Lee J et al %, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. Lett. 96 080501
[6]Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[7]Rybin A et al %, Miroshnichenko G, Vadeiko I and Timonen J1999 \it J. Phys. A: Math. Gen. 32 8739
[8]Naderi M H et al % , Soltanolkotabi M and Roknizadeh R2005 Eur.Phy. J. D 32 397
[9]van Enk S J 1999 Phys. Rev. A 60 5095
[10]Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[11]Peng J S and Li G X 1998 Introduction to Modern QuantumOptics (Singapore: World Scientific) chap 2
[12] Scully M O and Zubairy M S 1997 Quantum Optics(England: Cambridge University) chap 6
[13]Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[14]Wootters W K 1998 Phys. Rev. Lett. 80 2245
[15]Mi\v{sta L et al %, Filip R and Fiur\'{asek J2002 Phys. Rev. A 65 062315
[16]McHugh D et al %, Ziman M and Bu\v{zek V2006 Phys. Rev. A 74 042303
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1805-1808
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1805-1808
[3] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1805-1808
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 1805-1808
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 1805-1808
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1805-1808
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1805-1808
[8] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 1805-1808
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1805-1808
[10] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1805-1808
[11] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 1805-1808
[12] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1805-1808
[13] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 1805-1808
[14] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 1805-1808
[15] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1805-1808
Viewed
Full text


Abstract