Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 2032-2035    DOI:
Original Articles |
Discrete Element Method Numerical Modelling on Crystallization of Smooth Hard Spheres under Mechanical Vibration
AN Xi-Zhong
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article:   
AN Xi-Zhong 2007 Chin. Phys. Lett. 24 2032-2035
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The crystallization, corresponding to the fcc structure (with packing density ρ≈0.74), of smooth equal hard spheres under batch-wised feeding and three-dimensional interval vibration is numerically obtained by using the discrete element method. The numerical experiment shows that the ordered packing can be realized by proper control of the dynamic parameters such as batch of each feeding ξ and vibration amplitude A. The radial distribution function and force network are used to characterize the ordered structure. The defect
formed during vibrated packing is characterized as well. The results in our work fill the gap of getting packing density between random close packing and fcc packing in phase diagram which provides an effective way of theoretically investigating the complex process and mechanism of hard sphere crystallization and its dynamics.
Keywords: 61.43.Gt      61.43.Bn      81.05.Rm     
Received: 02 April 2007      Published: 25 June 2007
PACS:  61.43.Gt (Powders, porous materials)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  81.05.Rm (Porous materials; granular materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/02032
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AN Xi-Zhong
[1] German R M 1989 Particle Packing Characteristics (Princeton,NJ: Metal Powder Industries Federation)
[2] Bideau D and Hansen A 1993 Disorder and Granular Media, Random Materials and Processes Series (Amsterdam: Elsevier)
[3] Rintoul M D and Torquato S 1996 J. Chem. Phys. 105 9258
[4] Bernal J D and Mason J 1960 Nature 188 908
[5] Scott G D 1962 Nature 192 956
[6] Finney J L 1970 Proc. R. Soc. London A 319 479
[7] Yang R Y, Zou R P and Yu A B 2000 Phys. Rev. E 62 3900
[8] Knight J B, Fandrich C G, Lau C N, Jaeger H M and Nagel S R 1995 Phys. Rev. E 51 3957
[9] Nowak E R, Knight J B, Povinelli M L, Jaeger H M and Nagel S R 1997 Powder Technol. 94 79
[10] Philippe P and Bideau D 2001 Phys. Rev. E 63 051304-1
[11] Jodrey W S and Tory E M 1981 Powder Technol. 30 111
[12] Mehta A and Barker G C 1991 Phys. Rev. Lett. 67 394
[13] Rosato A D, Blackmore D L, Zhang N H and Lan Y D 2002 Chem.Eng. Sci. 57 265
[14] An X Z, Yang R Y, Dong K J, Zou R P and Yu A B 2005 Phys.Rev. Lett. 95 205502-1
[15] Hales T C 1997 Discrete Comput. Geom. 17 1(http://lanl.arxiv.org/abs/math.MG/9811071)
[16] Szpiro G G 2003 Kepler's Conjecture: How some of theGreatest Minds in History Helped Solve One of the Oldest Math Problemsin the World (New York: Wiley)
[17] Hermann H J 2002 Physica A 313 188
[18] Pusey P N, van Megen W, Bartlett P, Ackerson B J, Rarity J G andUnderwood S M 1989 Phys. Rev. Lett. 63 2753
[19] Davis K E, Russel W B and Glantschnig W J 1989 Science 245 507
[20] Van Blaaderen A, Ruel R and Wiltzius P 1997 Nature 385 321
[21] Volkov I, Cieplak M, Koplik J and Banavar J R 2002 Phys.Rev. E 66 061401
[22] Rocke F A 1970/71 Powder Technol. 4 180
[23] Pouliquen O, Nicolas M and Weidman P D 1997 Phys. Rev.Lett. 79 3640
[24] Nowak E R, Knight J B, Ben-Naim E, Jaeger H M and Nagel S R 1998 Phys. Rev. E 57 1971
[25] Daniels K E and Behringer R P 2005 Phys. Rev. Lett. 94 168001
[26] Owe Berg T G, McDonald R L and Trainor R J 1969/71 PowderTechnol. 3 183
[27] Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M and Nagel SR 2001 Phys. Rev. E 63 041304
[28] Nahmad-Molinari Y and Ruiz-Suarez J C 2002 Phys. Rev. Lett.89 264302
[29] Kansal A R, Torquato S and Stillinger F H 2002 Phys.Rev. E 66 041109-1
[30] R\'emond S 2003 Physica A 329 127
[31] Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S,Narayan O and Witten T A 1995 Science 269 513
[32] Radjai F H, Jean M, Moreau J J and Roux S 1996 Phys. Rev.Lett. 77 274
[33] Goldenberg C and Goldhirsch I 2005 Nature 435 188
[34] Yu A B, An X Z, Zou R P, Yang R Y and Kendall K 2006 Phys.Rev. Lett. 97 265501
[35] Schwager T and P\"oschel T 1998 Phys. Rev. E 57 650
[36] Clarke A S and Jonsson H 1993 Phys. Rev. E 47 3975
Related articles from Frontiers Journals
[1] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 2032-2035
[2] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 2032-2035
[3] S. Pengmanayol, T. Osotchan, M. Suewattana, N. Ingadapa, J. Girdpun . Hole Mobility of Molecular β-Copper Phthalocyanine Crystal[J]. Chin. Phys. Lett., 2011, 28(8): 2032-2035
[4] SUN Qi-Cheng**, JI Shun-Ying . A Pair Correlation Function Characterizing the Anisotropy of Force Networks[J]. Chin. Phys. Lett., 2011, 28(6): 2032-2035
[5] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 2032-2035
[6] WEN Zhang-Bin, HOU Zhi-Lin, FU Xiu-Jun** . Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure[J]. Chin. Phys. Lett., 2011, 28(4): 2032-2035
[7] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 2032-2035
[8] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 2032-2035
[9] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 2032-2035
[10] XU Ai-Guo, ZHANG Guang-Cai, LI Hua, ZHU Jian-Shi. Comparison Study on Characteristic Regimes in Shocked Porous Materials[J]. Chin. Phys. Lett., 2010, 27(2): 2032-2035
[11] JIN Yan-Fang, XIONG Chun-Yang, FANG Jing, FERRARI Mauro. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics[J]. Chin. Phys. Lett., 2009, 26(8): 2032-2035
[12] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 2032-2035
[13] HUANG Wei-Qi, LÜ, Quan, XU Li, ZHANG Rong-Tao, WANG Hai-Xu, JIN Feng. Various Trap States at SiGe-SiO2 Interface Formed by a Pulsed Laser[J]. Chin. Phys. Lett., 2009, 26(2): 2032-2035
[14] SHI Xiao-Dong, MIAO Guo-Qing. Pattern Formation in a Vibrated Granular Layer on an Inclined Base[J]. Chin. Phys. Lett., 2008, 25(5): 2032-2035
[15] LI Shui-Xiang, ZHAO Jian, ZHOU Xuan. Numerical Simulation of Random Close Packing with Tetrahedra[J]. Chin. Phys. Lett., 2008, 25(5): 2032-2035
Viewed
Full text


Abstract