Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2642-2645    DOI:
Original Articles |
Elastic Properties of Rutile TiO2 at High Temperature
WANG Yan-Ju1,2;CHANG Jing1,2;TAN Li-Na2;CHEN Xiang-Rong 1,2,3
Cite this article:   
WANG Yan-Ju, CHANG Jing, TAN Li-Na et al  2007 Chin. Phys. Lett. 24 2642-2645
Download: PDF(257KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dependence of elastic properties on temperature for rutile TiO2 is investigated by the Cambridge Serial Total Energy Package (CASTEP)
program in the frame of density function theory (DFT) and the quasi-harmonic Debye model. The six independent elastic constants of rutile TiO2 at high temperature are theoretically obtained for the first time. It is found that with increasing temperature, the elastic constants will decrease monotonically. Moreover, we successfully obtain the polycrystalline moduli BH and GH, as well as the Debye temperature θD.
Keywords: 71.15.Mb      62.20.Dc      77.84.Bw     
Received: 13 March 2007      Published: 16 August 2007
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.Dc  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02642
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yan-Ju
CHANG Jing
TAN Li-Na
CHEN Xiang-Rong
[1] Yan M F and Rhodes W W 1981 Grain boundaries inSemiconductors ed Leamy H J, Pike G E and Seager C H (New York:North-Holland)
[2] Koudriachova M V et al %, Harrison N M and de Leeuw S W2001 Phys. Rev.Lett. 86 1275
[3] Ostermann D et al %, Walther G and Schierbaum K D2005 Phys. Rev. B 71 235416
[4] Glassford K M and Chelikowsky J R 1992 Phys. Rev. B 46 1284
[5] Muscat J, Swamy V and Harrison N M 2002 Phys. Rev. B 65224112
[6] Isaak D G et al %, Carnes J D, Anderson O L and Cynn H1998 Phys. Chem.Minerals 26 31
[7] Hammer B et al %, Hansen L B and Norskov J K1999 Phys. Rev. B 59 7413
[8] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[9] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[10] Payne M C et al %, Teter M P, Allen D C, Arias T A and Joannopoulos J D1992 Rev. Mod. Phys. 64 1045
[11] Milan V et al %, Winker B, White J A, Packard C J, Payne M C, Akhmatskaya%E V and Nobes R H2002 Int. J. Quantum Chem. 77 895
[12] Murnaghan F D and Acad P N 1944 Proc. Natl. Acad. Sci.USA 30 244
[13]Reinhardt P, Hess B A and Causa M 1996 Int. J. QuantumChem. 58 297
[14] Lindan P J D et al %, Harrison N M, Gillan M J and White J A1997 Phys. Rev. B 55 15919
[15] Rosciszewski K et al %, Doll K, Paulus B, Fulde P and Stoll H1998 Phys. Rev. B 57 14667
[16]Cho E and Han S 2006 Phys. Rev. B 73 193202
[17]Burdett J K et al %, Hughbanks T, Miller G J, Richardson J W%and Smith J V1987 J. Am. Chem. Soc. 109 3639
[18] Gerward L and Olsen J S 1997 J. Appl. Crystallogr. 30 259
[19] Blanco M A, Francisco E and Luana V 2004 Comput. Phys.Commun. 158 57
[20] Ogata S, Lyetomi H and Tsurata K 1999 J. Appl. Phys. 86 6
[21] Swamy V and Gale J D 2000 Phys. Rev. B 62 9
[22] Manghnani M H 1969 J. Geophys. Res. 74 4317
[23] Steinle-Neumann G and Stixrude L and Cohen R E 1999 Phys. Rev. B 60 791
[24] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner)
[25] Reuss A 1929 Z. Angew. Math. Mech. 9 55
[26] Hill R 1952 Proc. R. Soc. London A 65 350
[27] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[28] Pascual J et al %, Camassel J and Mathieu H1978 Phys. Rev. B 185606
[29] Poumelec B et al %, Durham P Jand Guo G Y1991 J. Phys.Condens. Matter 3 8195
[30] Mo S Dand Ching W Y 1994 Phys. Rev. B 51 19
Related articles from Frontiers Journals
[1] LUO Xiao-Guang, HE Ju-Long. B–C–N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds[J]. Chin. Phys. Lett., 2012, 29(3): 2642-2645
[2] CAO Can, CHEN Ling-Na, JIA Shu-Ting, ZHANG Dan, XU Hui. First-Principles Study on Electronic Structures and Optical Properties of Doped Ag Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 2642-2645
[3] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 2642-2645
[4] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 2642-2645
[5] ZHANG Xiao-Dong, JIANG Zhen-Yi**, ZHOU Bo, HOU Zhu-Feng, HOU Yu-Qing . High-Order Elastic Constants and Anharmonic Properties of NaBH4: First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(7): 2642-2645
[6] ZHAO Na, WANG Yue-Hua**, ZHAO Xin-Yin, ZHANG Min, GONG Sai . Electronic Structure and Optical Properties of SrBi2A2O9(A=Nb,Ta)[J]. Chin. Phys. Lett., 2011, 28(7): 2642-2645
[7] ZHAO Xin-Yin, WANG Yue-Hua**, ZHANG Min, ZHAO Na, GONG Sai, CHEN Qiong . First-Principles Calculations of the Structural, Electronic and Optical Properties of BaZrxTi1−xO3 (x=0, 0.25, 0.5, 0.75)[J]. Chin. Phys. Lett., 2011, 28(6): 2642-2645
[8] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 2642-2645
[9] WANG Bao-Tian, ZHANG Ping** . Ideal Strengths and Bonding Properties of PuO2 under Tension[J]. Chin. Phys. Lett., 2011, 28(4): 2642-2645
[10] JIANG Jiu-Xing, **, JIN Shan, WANG Zhen-Hua, TAN Chang-Long . Electronic Structure and Optical Properties of Layered Ternary Carbide Ti3AlC2[J]. Chin. Phys. Lett., 2011, 28(3): 2642-2645
[11] JIN Hai-Bo**, LI Dan, CAO Mao-Sheng, DOU Yan-Kun, CHEN Tao, WEN Bo, Simeon Agathopoulos . Microwave Absorption Properties of Ni-Foped SiC Powders in the 2–18GHz Frequency Range[J]. Chin. Phys. Lett., 2011, 28(3): 2642-2645
[12] WANG Li-Na, FANG Xiao-Yong**, HOU Zhi-Ling, LI Ya-Lin, WANG Kun, YUAN Jie, CAO Mao-Sheng** . Polarization Mechanism of Oxygen Vacancy and Its Influence on Dielectric Properties in ZnO[J]. Chin. Phys. Lett., 2011, 28(2): 2642-2645
[13] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 2642-2645
[14] WANG Zhi . First-Principles Study of the Local Magnetic Moment on a N-Doped Cu2O (111) Surface[J]. Chin. Phys. Lett., 2011, 28(12): 2642-2645
[15] WU Yu-Qiang, WU Hong-Ying**, ZHAO Jie, LU Cui-Min, ZHANG Bao-Long, LIU Qing-Suo, MA Yong-Chang, . The Evidence for Ferroelectricity on Magnetite Ceramics below the Verwey Transition[J]. Chin. Phys. Lett., 2011, 28(12): 2642-2645
Viewed
Full text


Abstract