Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2918-2921    DOI:
Original Articles |
Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System
CAI Jin-Ming1;BAO Li-Hong1;GUO Wei1;CAI Li1;HUAN Qing1;LIAN Ji-Chun1;GUO Hai-Ming1;WANG Ke-Zhi2;SHI Dong-Xia1;PANG Shi-Jin1;GAO Hong-Jun1
1Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Department of Chemistry, Beijing Normal University, Beijing 100871
Cite this article:   
CAI Jin-Ming, BAO Li-Hong, GUO Wei et al  2007 Chin. Phys. Lett. 24 2918-2921
Download: PDF(972KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two kinds of forest-like and desert-like patterns are formed by thermal
evaporation of 4-dicyanovinyl-N, N-dimethylamino-1-naphthalene (DDAN)
onto SiO2 substrates. Based on thermal kinetics of the molecules on the substrate the transformation between the forest and desert patterns is due to two factors. The first one is the diffusion length, which is related to the deposition rate, the diffusion potential energy barrier and the substrate temperature. The second one is the strong interaction between the two polarity chemical groups of the molecules, which is beneficial to the formation of branches. Totally different patterns are also found on mica substrates, and are attributed to the anisotropic diffusion and the stronger interaction between DDAN molecules and the mica surface.
Keywords: 68.55.Ac      68.65.-k      64.60.Ak     
Received: 29 January 2007      Published: 20 September 2007
PACS:  68.55.Ac  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  64.60.Ak  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02918
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jin-Ming
BAO Li-Hong
GUO Wei
CAI Li
HUAN Qing
LIAN Ji-Chun
GUO Hai-Ming
WANG Ke-Zhi
SHI Dong-Xia
PANG Shi-Jin
GAO Hong-Jun
[1] Forrest S R 1997 Chem. Rev. 97 1793
[2] O'Neil M P, Niemczyk M P, Svec W A, Gosztola D, Gaines G L andWasielewski M R 1992 Science 257 63
[3] Mandelbrot B B 1982 Fractal Geometry of Nature (New York:Freeman)
[4] Li C R, Zhang X N and Cao Z X 2005 Science 309 909
[5] Gao H J et al %, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma%L P, Fang X W, Pang S J and Pennycook S J2000 Phys. Rev.Lett. 84 1780
[6] Shi D X, Wang Y L, Zhang H X, Jiang P, He S T, Pang S J and Gao H J2000 Appl. Phys. Lett. 77 3203
[7] Shi D X, Song Y L, Zhu D B and Gao H J 2001 Adv. Mater. 13 1103
[8] Feng M et al %, Guo X F, Lin X, He X B, Ji W, Du S X, Zhang D Q, Zhu D B%and Gao H J2005 J. Am. Chem. Soc. 127 15338
[9] Gao H J, Canright G S, Pang S J et al 1998 Fractals 6 337
[10] Sandler I M, Canright G S, Zhang Z Y et al 1998 Phys.Rev. A 245 233
[11] Service R F 2001 Science 293 1746
[12] Zhang Z Y and Lagally M G 1997 Science 276 377
[13] Witten T A and Sander L M 1981 Phys. Rev. Lett. 471400
[14] Brechignac C et al %, Cahuzac P, Carlier F, Colliex C,%Leroux J, Masson A, Yoon B and Landman U2002 Phys. Rev. Lett. 88 196103
[15] Wang M et al %, Liu X Y, Strom C S, Bennema P, van%Enckevort W and Ming N B1998 Phys. Rev. Lett. 80 3089
[16] Wang Y L et al %, Gao H J, Guo H M, Wang S and Pantelides S T2005 Phys. Rev. Lett. 94 106101
[17] Gao L et al%, Deng Z T, Ji W, Lin X, Cheng Z H, He X B, Shi D X and Gao H J2006 Phys. Rev. B 73 075424
[18] Shi D X, Ji W, Lin X, He X B, Lian J C, Gao L et al 2006 Phys. Rev. Lett. 96 226106
[19] Du S X, Gao H J and Seidel C 2006 Phys. Rev. Lett. 97156105
[20] Ravagnan L et al %, Siviero F, Lenardi C, Piseri P,%Barborini E, Milani P, Casari C S, Li Bassi A and Bottani C E2002 Phys. Rev. Lett. 89 285506
[21] Liu B G, Wu J, Wang E G and Zhang Z Y 1999 Phys.Rev. Lett. 83 1195
[22] Krause B et al %, Durr A C, Ritley K, Schreiber F, Dosch H%and Smilgies D2002 Phys. Rev. B 66 235404
[23] Gao H J, Xue Z Q, Wang K Z, Wu Q D and Pang S J 1996 Appl.Phy. Lett. 68 2192
[24] Gao H J, Xue Z Q, Wu Q D and Pang S J 1995 J. Vacuum Sci.Technol. B 13 1242
[25] Melby C R et al 1962 J. Am. Chem. Soc. 84 3374
[26] Carroll R L and Gorman C B 2002 Angew. Chem. Int. Ed. 41 4378
[27] Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem.Rev. 103 3899
[28] Bosch P et al %, Fernandez-Arizpe A, Mateo J L, Catalina F and%Peinado C2002 J. Photochem. Photobiol. A: Chem. 153 135
[29] Bosch P et al %, Fernandez-Arizpe A, Mateo J L, Lozano A E and%Noheda P2000 J. Photochem. Photobiol. A: Chem. 133 51
[30] Hakala K et al %, Vatanparast R, Li S Y, Peinado C, Bosch%P, Catalina F and Lemmetyinen H2000 Macromolecules 33 5954
[31] Wu H M, Song Y L, Du S X, Liu H W, Gao H J,Jiang L and Zhu D B 2003 Adv. Meter. 15 1925
[32] Wen Y Q, Song Y L, Gao H J et al 2004 Adv. Mater. 16 2018
[33] Jiang G Y, Feng M, Wen Y Q, Du S X, Gao H J et al 2005 Adv. Mater. 17 2170
[34] Ruiz R et al 2004 Chem. Mater. 16 4497
[35] Hartman H, Sposito G and Yang A 1990 Clays and Clay Minerals 38 337
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 2918-2921
[2] LI Zhan-Guo, LIU Guo-Jun**, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission[J]. Chin. Phys. Lett., 2010, 27(12): 2918-2921
[3] NI Heng-Kan, ZOU Qiang**, FU Xing, WU Sen, WANG Hui, XUE Tao . Production of ZnO Nanobelts and Meso-Scale Study of Mechanical Properties[J]. Chin. Phys. Lett., 2010, 27(11): 2918-2921
[4] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(8): 2918-2921
[5] LI Lin, LIU Guo-Jun, WANG Xiao-Hua, LI Mei, LI Zhan-Guo, WAN Chun-Ming. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2008, 25(2): 2918-2921
[6] ZHANG Ri-Qing, LIU Xiang-Lin, KANG Ting-Ting, HU Wei-Guo, YANG Shao-Yan, JIAO Chun-Mei, ZHU Qing-Sheng. Influence of Different Interlayers on Growth Mode and Properties of InN by MOVPE[J]. Chin. Phys. Lett., 2008, 25(1): 2918-2921
[7] YANG Meng-Jin, LAI Wen-Sheng, PAN Feng. Elastic Modulus and Hardness of Cr--Nb Nano-Multilayers[J]. Chin. Phys. Lett., 2007, 24(9): 2918-2921
[8] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 2918-2921
[9] YAN Jian-Feng, XING Zhi-Gang, WANG Jing, GUO Li-Wei, ZHU Xue-Liang, PENG Ming-Zeng, YU Nai-Sen, JIA Hai-Qiang, CHEN Hong, ZHOU Jun-Ming. Elimination of Crystallographic Wing Tilt of Canti-Bridged Epitaxial Laterally Overgrown GaN Films by Optimizing Growth Procedure[J]. Chin. Phys. Lett., 2007, 24(7): 2918-2921
[10] LI Xin, XU Chun-Xiang, ZHU Guang-Ping, YANG Yi, LIU Jin-Ping, SUN Xiao-Wei, CUI Yi-Ping. Disc-Capped ZnO Nanocombs[J]. Chin. Phys. Lett., 2007, 24(12): 2918-2921
[11] SHEN Quan-Tong, SUN Guo-Feng, LI Wen-Juan, DONG Guo-Cai, HAN Tie-Zhu, MA Da-Yan, SUN Yu-Jie, JIA Jin-Feng, XUE Qi-Kun,. Growth of Cu Films on Si(111)-7×7 Surfaces at Low Temperature: A Scanning Tunnelling Microscopy Study[J]. Chin. Phys. Lett., 2007, 24(11): 2918-2921
[12] XIE Wen-Fang. Four Electrons in a Coupled Three-Layer Quantum Dot[J]. Chin. Phys. Lett., 2007, 24(1): 2918-2921
[13] KE Jian-Hong, LIN Zhen-Quan, CHEN Xiao-Shuang. A Solvable Symbiosis-Driven Growth Model[J]. Chin. Phys. Lett., 2006, 23(12): 2918-2921
[14] XUE Shou-Bin, ZHUANG Hui-Zhao, XUE Cheng-Shan, HU Li-Jun. Synthesis of GaN Nanorods by Ammoniating Ga2O3/ZnO Films[J]. Chin. Phys. Lett., 2006, 23(11): 2918-2921
[15] LI Ai-Yu, WANG Xiao-Chun, WEN Yu-Hua, ZHU Zi-Zhong. TiNi Monatomic Chains Stabilized by Alloying: a First-Principles Study[J]. Chin. Phys. Lett., 2006, 23(1): 2918-2921
Viewed
Full text


Abstract