Original Articles |
|
|
|
|
Magnetic Properties and Spin State Transition of Gallium Doped Perovskite Cobaltite Oxide |
WU Zhi-Min1,2,3;WANG Xin-Qiang2;WANG Fang-Wei3 |
1College of Physics and Information Technology, Chongqing Normal University, Chongqing 4000442Department of Physics, Chongqing University, Chongqing 4000443Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
WU Zhi-Min, WANG Xin-Qiang, WANG Fang-Wei 2007 Chin. Phys. Lett. 24 3249-3252 |
|
|
Abstract A series of Ga doping perovskite cobaltite La2/3Sr1/3(Co1-yGay)O3 (y=0, 0.1, 0.2, 0.3 and 0.4) are prepared by the standard solid-state reaction method. Their magnetic properties and Co ions spin state transitions are studied. Upon doping, no appreciable structure changes can be found. However, the corresponding Curie temperature sharply decreases and the magnetization is greatly reduced, indicating that Ga doping destroys the ferromagnetic interaction in the system. In addition, the high temperature magnetization data follow the Curie--Weiss law. At least one kind of Co ions (Co3+ or Co4+) favours the mixed spin state, and most Co ions are at the lower spin state (low and intermediate state). With increasing Ga content, more Co ions transit to the higher spin state.
|
Keywords:
75.30.Kz
75.40.Cx
75.25.+z
|
|
Received: 21 July 2007
Published: 23 October 2007
|
|
PACS: |
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.25.+z
|
|
|
|
|
|
[1] English S R, Wu J and Leighton C 2002 Phys. Rev. B 65220407 [2] Wang W R et al 2005 Chin. Phys. Lett. 22 2400 [3] Aarbogh H M et al 2006 Phys. Rev. B 74 134408 [4] Imada M et al 1998 Rev. Mod. Phys. 70 1039 [5] Asai K et al 1994 Phys. Rev. B 50 3025 [6] Korotin M A et al 1996 Phys. Rev. B 54 309 [7] Yamaguchi S et al 1997 Phys. Rev. B 55 R8666 [8] Kobayashi Y et al 2000 Phys. Rev. B 62 410 [9] Yamaguchi S et al 1996 Phys. Rev. B 53 R2926 [10] Zobel C et al 2002 Phys. Rev. B 66 020402 [11] Asai K et al 1989 Phys. Rev. B 40 10982 [12] Itoh M et al 1995 J. Phys. Soc. Jpn. 64 3967 [13] Kyomen T et al 2005 Phys. Rev. B 71 024418 [14] Tsutsui K et al 1999 Phys. Rev. B 59 4549 [15] Noguchi S et al 2002 Phys. Rev. B 66 094404 [16] Radaelli P G et al 2002 Phys. Rev. B 66 094408 [17] Asai K et al 1998 J. Phys. Soc. Jpn. 67 190 [18] Maris G et al 2003 Phys. Rev. B 67 224423 [19] Chainani A, Mathew M and Sarma D D 1992 Phys. Rev. B 46 9976 [20] Lankhorst M H R, Bouwmeester H J M and Verweij H 1996 Phys.Rev. Lett. 77 2989 [21] Ibarra M R et al 1998 Phys. Rev. B 57 R3217 [22] Sun Y, Xu X J and Zhang Y H 2000 Phys. Rev.B 62 5289 [23] Shang Y M and Yao K L 2005 Chin. Phys. Lett. 22 195 [24] Itoh M et al 1994 J. Phys. Soc. Jpn. 63 1486 [25] Wu J and Leighton C 2003 Phys. Rev. B 67 174408 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|