Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 604-607    DOI:
Original Articles |
Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique
LIU Zheng-Feng1;WANG Xiao-Hong 1,2
1Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 2300262The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Zheng-Feng, WANG Xiao-Hong 2008 Chin. Phys. Lett. 25 604-607
Download: PDF(176KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower
order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
Keywords: 47.27.Em      05.10.Cc     
Received: 03 October 2007      Published: 30 January 2008
PACS:  47.27.em (Eddy-viscosity closures; Reynolds stress modeling)  
  05.10.Cc (Renormalization group methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0604
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zheng-Feng
WANG Xiao-Hong
[1] Demuren A and Rodi W 1984 J. Fluid Mech. 140 189
[2] Speziale C G 1987 J. Fluid Mech. 178 459
[3] Speziale C G 1991 Annu. Rev. Fluid Mech. 23 107
[4] Fu S, Launder B E and Tselapidakis D P 1987 Departmentof Mechanics Engineering, UMIST, UK Rep No TFD/87/5
[5] Shih T H, Zhu J and Lumley J L 1995 Comput. Methods Appl.Mech. Engng. 125 287
[6] Craft T J, Launder B E and Suga K 1996 Int. J. Heat FluidFlow 17 108
[7] Gatski T B and Jongen T 2000 Prog. Aeros. Sci. 36 655
[8] Huang Y N 2004 Comm. Nonlinear Sci. Numer. Simulat. 9 543
[9] Huang Y N and Ma H Y 2004 Phys. Rev. E 70 036302
[10] Yoshizawa A 1984 Phys. Fluids 27 1377
[11] Yoshizawa A 1993 Phys. Fluids A 5 707
[12] Rubinstein R and Barton J M 1990 Phys. Fluids A 2 1472
[13] Rubinstein R and Barton J M 1992 Phys. Fluids A 4 1759
[14] Yakhot V and Orszag S 1986. J. Sci. Comput. 1 3
[15] Liu Z F and Wang X H 2007 Chin. J. Theor. Appl. Mech. l39 195 (in Chinese)
[16] Wang X H and Wu F 1993 Phys. Rev. E 48 R37
[17] Sukoriansky S, Galperin B and Staroselsky I 2003 FluidDyn. Res. 33 319
[18] Speziale C G 1998 Int. J. Non-Linear Mech. 33 579
Related articles from Frontiers Journals
[1] WANG Xian-Ju, LI Hai, LI Xin-Fang, WANG Zhou-Fei**, LIN Fang . Stability of TiO2 and Al2O3 Nanofluids[J]. Chin. Phys. Lett., 2011, 28(8): 604-607
[2] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 604-607
[3] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 604-607
[4] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 604-607
[5] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 604-607
Viewed
Full text


Abstract