Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 064204    DOI: 10.1088/0256-307X/27/6/064204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optical Properties of Plasmon Resonances with Ag/SiO2/Ag Multi-Layer Composite Nanoparticles
MA Ye-Wan, ZHANG Li-Hua, WU Zhao-Wang, ZHANG Jie
School of Physics and Electric Engineering, Anqing Teachers College, Anqing 246011
Cite this article:   
MA Ye-Wan, ZHANG Li-Hua, WU Zhao-Wang et al  2010 Chin. Phys. Lett. 27 064204
Download: PDF(682KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical properties of plasmon resonance with Ag/SiO2/Ag multi-layer nanoparticles are studied by numerical simulation based on Green's function theory. The results show that compared with single-layer Ag nanoparticles, the multi-layer nanoparticles exhibit several distinctive optical properties, e.g. with increasing the numbers of the multi-layer nanoparticles, the scattering efficiency red shifts, and the intensity of scattering enhances accordingly. It is interesting to find out that slicing an Ag-layer into multi-layers leads to stronger scattering intensity and more ``hot spots'' or regions of stronger field enhancement. This property of plasmon resonance of surface Raman scattering has greatly broadened the application scope of Raman spectroscopy. The study of metal surface plasmon resonance characteristics is critical to the further understanding of surface enhanced Raman scattering as well as its applications.

Keywords: 42.25.-p      42.25.Hz      42.62.-b     
Received: 08 March 2010      Published: 25 May 2010
PACS:  42.25.-p (Wave optics)  
  42.25.Hz (Interference)  
  42.62.-b (Laser applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/064204       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/064204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Ye-Wan
ZHANG Li-Hua
WU Zhao-Wang
ZHANG Jie
[1] Nie S et al 1997 Science 275 1102
[2] Barnes L W et al 2003 Nature 424 824
[3] Shuford K L et al 2005 J. Chem. Phys. 123 114713
[4] Murray W A et al 2007 Adv. Mater. 19 3771
[5] Maier S A 2007 Plasmonics: Fundamentals and Application (Berlin: Springer)
[6] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[7] Novotny L 2006 Principle of Nano-Optics (Cambridge: Cambridge University)
[8] Brioude A et al 2005 J. Phys. Chem. B 109 23371
[9] Kelly K L et al 2003 J. Phys. Chem. B 107 668
[10] Kottmann J P et al 2001 Opt. Express 8 655
[11] Su K H et al 2006 Appl. Phys. Lett. 88 063118
[12] Wu D J et al 2008 J. Chem. Phys. 129 074711
[13] Hoflich K et al 2009 J. Chem. Phys. 131 164704
[14] Wang J Q et al 2009 Chin. Phys. Lett. 26 084208
[15] Ma Y W et al 2010 Chin. Phys. Lett. 27 024207
[16] Girard C et al 1995 Phys. Rev. B 52 2889
[17] Martin O J F et al 1995 Phys. Rev. Lett. 74 526
[18] Johnson P B et al 1972 Phys. Rev. B 12 4370
[19] Ma Y W et al 2008 Chin. Phys. Lett. 25 2473
[20] Ma Y W et al 2009 J. Appl. Phys. 105 103101
Related articles from Frontiers Journals
[1] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 064204
[2] WANG Qian-Qian**,LIU Kai,ZHAO Hua. Multivariate Analysis of Laser-Induced Breakdown Spectroscopy for Discrimination between Explosives and Plastics[J]. Chin. Phys. Lett., 2012, 29(4): 064204
[3] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 064204
[4] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 064204
[5] CAO Bin**, ZHANG Chun-Xi, OU Pan, LIN Zhi-Li, SUN Ming-Jie. Two-Detector Arbitrary Nth-Order HBT-Type Ghost Diffraction[J]. Chin. Phys. Lett., 2012, 29(1): 064204
[6] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 064204
[7] ZHANG Zheng, PAN Di, YU Yu**, ZHANG Xin-Liang . All-Optical Format Conversion from RZ-DPSK to NRZ-DPSK at 40Gbit/s[J]. Chin. Phys. Lett., 2011, 28(5): 064204
[8] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 064204
[9] HU Xiao-Gen**, LI Yu-He**, LIN Hao-Shan, WANG Dong-Sheng, QI Xin . Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization[J]. Chin. Phys. Lett., 2011, 28(4): 064204
[10] FAN Lin-Yong**, JIANG Wei-Wei, ZHAO Rui-Feng, PEI Li, JIAN Shui-Sheng . Multi-Beam Interference Transmission Spectrum Observed from an Eccentric Core Single-Mode Fiber[J]. Chin. Phys. Lett., 2011, 28(2): 064204
[11] LV Fan, SUN Fang-Wen**, ZOU Chang-Ling, HAN Zheng-Fu, GUO Guang-Can . Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference[J]. Chin. Phys. Lett., 2011, 28(2): 064204
[12] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 064204
[13] WANG Feng-Rui, LIU Hong-Jie, HUANG Jin, ZHOU Xin-Da, JIANG Xiao-Dong**, WU Wei-Dong, ZHENG Wan-Guo, JU Xin . Simulation of Light Intensification Induced by Defects of Polished Fused Silica[J]. Chin. Phys. Lett., 2011, 28(1): 064204
[14] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 064204
[15] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 064204
Viewed
Full text


Abstract