Chin. Phys. Lett.  2005, Vol. 22 Issue (12): 3025-3028    DOI:
Original Articles |
Escape from a Riddled-Like Basin
CHAO Xiao-Gang1,2;DAI Jun1;WANG Wen-Xiu1;HE Da-Ren1
1College of Physics Science and Technology, Yangzhou University, Yangzhou 225002 2Information Science Department, Jiangsu Polytechnic University, Changzhou 213016
Cite this article:   
CHAO Xiao-Gang, DAI Jun, WANG Wen-Xiu et al  2005 Chin. Phys. Lett. 22 3025-3028
Download: PDF(232KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a system described by a conservative and a dissipative map concatenation. A fat fractal forbidden net, induced by interaction between discontinuous and noninvertible properties, introduces rippled-like attraction basins of two periodic attractors. Small areas, which serve as escaping holes of a new type of crisis, are dominated by conventional strong dissipation and are bounded by the forbidden region, but only in the vicinity of each periodic point. Based on this understanding, the scaling behaviour of the averaged lifetime of the crisis is analytically and numerically determined to be <τ> ∝ (b-b0)γ, where b denotes the control parameter, b0 denotes its critical threshold, and γ simeq -1.5.
Keywords: 05.45.Ac      05.10.-a      05.45.-a     
Published: 01 December 2005
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I12/03025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHAO Xiao-Gang
DAI Jun
WANG Wen-Xiu
HE Da-Ren
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3025-3028
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 3025-3028
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3025-3028
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3025-3028
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3025-3028
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 3025-3028
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3025-3028
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3025-3028
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3025-3028
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3025-3028
Viewed
Full text


Abstract