Chin. Phys. Lett.  2006, Vol. 23 Issue (4): 932-935    DOI:
Original Articles |
Effect of Anti-Diffusion Oxide Layer on Enhanced Thermal Stability of Magnetic Tunnel Junctions
ZHANG Zong-Zhi1;ZHAO Hui1;Cardoso S.2;Freitas P. P.2
1Department of Optical Science and Engineering, State Key Laboratory for Advanced Photonic Materials and Devices, Fudan University, Shanghai 200433 2INESC-MN, R. Alves Redol, 9, 1000 and Physics Department, IST, Av. Rovisco Pais, 1096, Lisbon, Portugal
Cite this article:   
ZHANG Zong-Zhi, ZHAO Hui, Cardoso S. et al  2006 Chin. Phys. Lett. 23 932-935
Download: PDF(270KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic tunnel junctions (MTJs) with one proper oxidized FeOx layer placed between the Al oxide barrier and the top CoFe pinned layer show large tunnelling-magnetoresistance (TMR) signals as high as 39% after anneal at 380°C. The increased TMR signal may originate from the as-deposited Fe/FeOx (non-magnetic) layers changing to Fe+magnetic FeOy layer (some Fe3O4 and mostly other kind of magnetic Fe oxide) after high temperature anneal. The maximum TMR value (TMRmax) and the corresponding temperature Ts where the TMRmax occurs upon annealing are closely associated with the oxidation time of the AlOx and FeOx layers, too long oxidation for the Fe layers is detrimental for the TMR value. In addition to the enhanced AlOx barrier quality upon anneal, the improved thermal stability is also attributed to the Mn diffusion retardation by the presence of the FeOx layer which acts as an antidiffusion layer. For MTJs without the interposed FeOx layer, the TMR signal reduction at 300°C originates from the MnIr/CoFe partially decoupling and CoFe/AlOx interface polarization loss due to the significant Mn diffusion.
Keywords: 68.60.Dv      73.43.Qt      75.70.Cn      66.30.Ny     
Published: 01 April 2006
PACS:  68.60.Dv (Thermal stability; thermal effects)  
  73.43.Qt (Magnetoresistance)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  66.30.Ny (Chemical interdiffusion; diffusion barriers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I4/0932
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zong-Zhi
ZHAO Hui
Cardoso S.
Freitas P. P.
Related articles from Frontiers Journals
[1] HAN Kui, TANG Ning**, DUAN Jun-Xi, LU Fang-Chao, LIU Yu-Chi, SHEN Bo**, ZHOU Wen-Zheng, LIN Tie, SUN Lei, YU Guo-Lin, CHU Jun-Hao . Oscillations of Low-Field Magnetoresistivity of Two-Dimensional Electron Gases in Al0.22Ga0.78N/GaN Heterostructures in a Weak Localization Region[J]. Chin. Phys. Lett., 2011, 28(8): 932-935
[2] DING Tao, SONG Jun-Qiang, LI Juan, CAI Qun** . Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface[J]. Chin. Phys. Lett., 2011, 28(6): 932-935
[3] ZHOU Guang-Hong, **, ZHU Yu-Fu, LIN Yue-Bin . Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation[J]. Chin. Phys. Lett., 2011, 28(5): 932-935
[4] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 932-935
[5] TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan. Structural and Magnetic Properties of [Fe/Ni]N Multilayers[J]. Chin. Phys. Lett., 2010, 27(7): 932-935
[6] GAO Xiao-Yong, FENG Hong-Liang, ZHANG Zeng-Yuan, MA Jiao-Min, LU Jing-Xiao. Effects of Rapid Thermal Processing on Microstructure and Optical Properties of As-Deposited Ag2O Films by Direct-Current Reactive Magnetron Sputtering[J]. Chin. Phys. Lett., 2010, 27(2): 932-935
[7] HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae[J]. Chin. Phys. Lett., 2010, 27(1): 932-935
[8] ZHANG Jing, DU Jun, BAI Xiao-Jun, YOU Biao, ZHANG Wei, HU An. Training Effect and Hysteretic Behaviour of Angular Dependence of Exchange Bias in Co/IrMn Bilayers[J]. Chin. Phys. Lett., 2009, 26(4): 932-935
[9] LU Ran, FANG Xiao-Yong, KANG Yu-Qing, YUAN Jie, CAO Mao-Sheng. Microwave Absorption and Response Modeling of Nanocomposites Embedded SiC Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(4): 932-935
[10] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 932-935
[11] LUO Wei, ZHU Lin-Li, ZHENG Xiao-Jing. Grain Size Effect on Electrical Conductivity and Giant Magnetoresistance of Bulk Magnetic Polycrystals[J]. Chin. Phys. Lett., 2009, 26(11): 932-935
[12] Tran Le, Tuan Tran, Huu Chi Nguyen, Dac Ngoc Son Luu, Minh Nam Hoang, Dinh Quan Nguyen. Fabrication and Characterization of Multi-layer Heat Mirror with Photocatalytic Properties[J]. Chin. Phys. Lett., 2009, 26(11): 932-935
[13] WU Hong-Ye, ZOU Tao, CHENG Zhao-Hua, SUN Young. Vortex Pinning due to Dynamic Spin-Vortex Interaction in aSuperconductor/Ferromagnet Multilayer[J]. Chin. Phys. Lett., 2009, 26(1): 932-935
[14] ZHANG Xing, TAKAHASHI Koji, FUJII Motoo. Charge and Heat Transport in Polycrystalline Metallic Nanostructures[J]. Chin. Phys. Lett., 2008, 25(9): 932-935
[15] CHEN Li-Ping, MA Yu-Bin, SONG Xian-Feng, LIAN Gui-Jun, ZHANG Yan, XIONGGuang-Cheng. Relationship of Polaron Exchange with Ferromagnetic and Insulator--Metal Transitions in Doped Manganites[J]. Chin. Phys. Lett., 2008, 25(9): 932-935
Viewed
Full text


Abstract