Chin. Phys. Lett.  2006, Vol. 23 Issue (4): 887-890    DOI:
Original Articles |
Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle
TANG Xiao-Yan1,2;HUANG Fei1,2,3;LOU Sen-Yue1,2
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Center of Nonlinear Science, Ningbo University, Ningbo 315211 3Department of Marine Meteorology, Ocean University of China, Qingdao 266003
Cite this article:   
TANG Xiao-Yan, HUANG Fei, LOU Sen-Yue 2006 Chin. Phys. Lett. 23 887-890
Download: PDF(1035KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. The analytical solution obtained from the VCKdV equation can be successfully used to explain fruitful phenomena in fluid and other physical fields, for instance, the atmospheric blocking phenomena. In particular, a diploe blocking case happened during 9 April 1973 to 18 April 1973 read out from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data is well described by the analytical solution.
Keywords: 47.35.+i      47.32.-y      92.60.Dj      02.30.Ik      02.30.Jr     
Published: 01 April 2006
PACS:  47.35.+i  
  47.32.-y (Vortex dynamics; rotating fluids)  
  92.60.Dj  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I4/0887
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Xiao-Yan
HUANG Fei
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 887-890
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 887-890
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 887-890
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 887-890
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 887-890
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 887-890
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 887-890
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 887-890
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 887-890
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 887-890
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 887-890
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 887-890
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 887-890
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 887-890
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 887-890
Viewed
Full text


Abstract