Chin. Phys. Lett.  2004, Vol. 21 Issue (2): 254-257    DOI:
Original Articles |
Phase Synchronization as a Mechanism of Controlling Spatiotemporal Chaos via External Periodic Signal
SANG Hai-Bo1,2,3;HE Kai-Fen1,2,3
1The Key Laboratory of Beam Technology and Materials Modification of Education Ministry, Beijing Normal University, Beijing 100875 2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 3Beijing Radiation Centre, Beijing 100875
Cite this article:   
SANG Hai-Bo, HE Kai-Fen 2004 Chin. Phys. Lett. 21 254-257
Download: PDF(848KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We find that phase synchronization (PS) is a mechanism in which the spatiotemporal chaos (STC) can be suppressed to a spatially regular (SR) state by applying an external periodic signal in a one-dimensional driven drift-wave system. In the driving wave coordinate, the nonlinear system can be transformed to a set of coupled oscillators moving in a periodic potential. In this multi-dimensional system, the internal modes are slaved one by one through PS by the control signal. Two types of responses of the internal modes to the external periodic signal are observed. For some modes, the stabilization is through frequency-locking; while for the other modes, a special kind of PS without frequency-locking, namely multi-looping PS, is developed.

Keywords: 05.45.-a      52.35.Kt      52.35.-g      05.45.Gg     
Published: 01 February 2004
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  52.35.Kt (Drift waves)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I2/0254
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SANG Hai-Bo
HE Kai-Fen
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 254-257
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 254-257
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 254-257
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 254-257
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 254-257
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 254-257
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 254-257
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 254-257
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 254-257
Viewed
Full text


Abstract