Chin. Phys. Lett.  2004, Vol. 21 Issue (7): 1201-1204    DOI:
Original Articles |
Functional Integral Approach to the Transition Temperature of Attractive Interacting Bose Gas in Traps
HU Guang-Xi1,2;DAI Xian-Xi2
1State Key Laboratory of ASIC & System, Fudan University, Shanghai 200433 2Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
HU Guang-Xi, DAI Xian-Xi 2004 Chin. Phys. Lett. 21 1201-1204
Download: PDF(286KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The functional integral approach (FIA) is introduced to study the transition temperature of an imperfect Bose gas in traps. An interacting model in quantum statistical mechanics is presented. With the model we study a Bose gas with attractive interaction trapped in an external potential. We obtain the result that the transition temperature of a trapped Bose gas will slightly shift upwards owing to the attractive interacting force. Successful application of the FIA to Bose systems is demonstrated.


Keywords: 03.75.Fi      05.30.Jp     
Published: 01 July 2004
PACS:  03.75.Fi  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I7/01201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Guang-Xi
DAI Xian-Xi
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 1201-1204
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 1201-1204
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 1201-1204
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 1201-1204
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 1201-1204
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 1201-1204
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 1201-1204
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 1201-1204
[9] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 1201-1204
[10] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 1201-1204
[11] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 1201-1204
[12] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 1201-1204
[13] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 1201-1204
[14] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 1201-1204
[15] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System[J]. Chin. Phys. Lett., 2009, 26(8): 1201-1204
Viewed
Full text


Abstract