Chin. Phys. Lett.  1997, Vol. 14 Issue (1): 1-4    DOI:
Original Articles |
New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation
LOU Sen-yue1,3;CHEN Li-li2;WU Qi-xian2
1Institute of Modern Physics, 2Department of Physics, Ningbo Normal College, Ningbo 315211 3also Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080; Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
LOU Sen-yue, CHEN Li-li, WU Qi-xian 1997 Chin. Phys. Lett. 14 1-4
Download: PDF(182KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the inner parameter dependent symmetry constraints of the modified Kadomtsev-Petviashvili equation, we get an integrable (2 + 1)-dimensional multi-component Burgers and a (2 + 1)-dimensional integrable extensions of the derivative nonlinear Schrödinger equation.
Keywords: 03.40.-t      02.30.Jr      11.10.Lm     
Published: 01 January 1997
PACS:  03.40.-t  
  02.30.Jr (Partial differential equations)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I1/01
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-yue
CHEN Li-li
WU Qi-xian
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1-4
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1-4
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1-4
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1-4
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1-4
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1-4
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1-4
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1-4
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 1-4
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1-4
Viewed
Full text


Abstract