Chin. Phys. Lett.  1999, Vol. 16 Issue (9): 659-661    DOI:
Original Articles |
A Direct Perturbation Method: Nonlinear Schrodinger Equation with Loss
LOU Sen-yue
Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030 Institute of Mathematical Physics, Ningbo University, Ningbo 315211
Cite this article:   
LOU Sen-yue 1999 Chin. Phys. Lett. 16 659-661
Download: PDF(266KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the nonlinear Schrodinger (NLS) equation, which is used to describe the propagation of the solitons in many real physical systems like fiber and plasma, as a simple example, a direct perturbation method is established. Up to the adiabatic (zero order) approximation, any waves of the NLS equation decay in the same rate. Especially, different from the known claims in literature, the decay rate of the dark soliton in fiber is the same as that of the bright soliton. Starting from any one of the infinitely many adiabatic symmetries (or conservation laws) of the nonperturbative NLS equation, one can get the same adiabatic solutions. An adiabatic symmetry by multiplying a decay factor is just the first order modification. Higher order modifications can be obtained by solving linear equations.
Keywords: 42.81.Dp      02.30.Jr      03.40. Kf     
Published: 01 September 1999
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  02.30.Jr (Partial differential equations)  
  03.40. Kf  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I9/0659
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 659-661
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 659-661
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 659-661
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 659-661
[5] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 659-661
[6] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 659-661
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 659-661
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 659-661
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 659-661
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 659-661
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 659-661
[12] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 659-661
[13] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 659-661
[14] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 659-661
[15] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 659-661
Viewed
Full text


Abstract