CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Defects in Statically Unstable Solids: The Case for Cubic Perovskite $\alpha$-CsPbI$_3$ |
Xiaowei Wu1†, Chen Ming1†, Jing Shi2†, Han Wang3, Damien West4, Shengbai Zhang4, and Yi-Yang Sun1* |
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 2Department of Physics, Jiangxi Normal University, Nanchang 330022, China 3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
|
|
Cite this article: |
Xiaowei Wu, Chen Ming, Jing Shi et al 2022 Chin. Phys. Lett. 39 046101 |
|
|
Abstract High-temperature phases of solids are often dynamically stable only. First-principles study of point defects in such solids at 0 K is prohibited by their static instability, which results in random structures of the defect-containing supercell so that the total energy of the supercell is randomly affected by structural distortions far away from the defect. Taking cubic perovskite $\alpha$-CsPbI$_3$ as an example, we first present the problem incurred by the static instability and then propose an approach based on molecular dynamics to carry out ensemble average for tackling the problem. Within affordable simulation time, we obtain converged defect ionization energies, which are unattainable by a standard approach and allow us to evaluate its defect tolerance property. Our work paves the way for studying defects in statically unstable solids.
|
|
Received: 24 December 2021
Express Letter
Published: 10 March 2022
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
|
|
|
[1] | Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, and Snaith H J 2015 J. Mater. Chem. A 3 19688 |
[2] | Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, and Luther J M 2016 Science 354 92 |
[3] | Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X et al. 2016 J. Am. Chem. Soc. 138 15829 |
[4] | Wang Y, Zhang T, Kan M, and Zhao Y 2018 J. Am. Chem. Soc. 140 12345 |
[5] | Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, and Kovalenko M V 2015 Nano Lett. 15 5635 |
[6] | Song J, Li J, Li X, Xu L, Dong Y, and Zeng H 2015 Adv. Mater. 27 7162 |
[7] | Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, and Rogach A L 2016 Nano Lett. 16 1415 |
[8] | Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, and Kovalenko M V 2015 Nano Lett. 15 3692 |
[9] | Yoon S M, Min H, Kim J B, Kim G, Lee K S, and Seok S I 2021 Joule 5 183 |
[10] | Wang Y, Chen Y, Zhang T, Wang X, and Zhao Y 2020 Adv. Mater. 32 2001025 |
[11] | Xiang W, Liu S F, and Tress W 2021 Energy & Environ. Sci. 14 2090 |
[12] | Trots D M and Myagkota S V 2008 J. Phys. Chem. Solids 69 2520 |
[13] | Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, and You J 2018 Nat. Commun. 9 2225 |
[14] | Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L, Wang X, Yang Y, Gao X et al. 2019 Science 365 591 |
[15] | Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y et al. 2018 J. Am. Chem. Soc. 140 11716 |
[16] | Wang K, Jin Z, Liang L, Bian H, Wang H, Feng J, Wang Q, and Liu S F 2019 Nano Energy 58 175 |
[17] | Ye Q, Ma F, Zhao Y, Yu S, Chu Z, Gao P, Zhang X, and You J 2020 Small 16 2005246 |
[18] | Agiorgousis M L, Sun Y Y, Zeng H, and Zhang S 2014 J. Am. Chem. Soc. 136 14570 |
[19] | Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, and Berry J J 2016 ACS Energy Lett. 1 360 |
[20] | Yin W J, Shi T, and Yan Y 2014 Appl. Phys. Lett. 104 063903 |
[21] | Brandt R E, Stevanović V, Ginley D S, and Buonassisi T 2015 MRS Commun. 5 265 |
[22] | Walsh A and Zunger A 2017 Nat. Mater. 16 964 |
[23] | Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Perini C A R, Deschler F, Petrozza A, and De Angelis F 2018 Energy & Environ. Sci. 11 702 |
[24] | Park J S, Kim S, Xie Z, and Walsh A 2018 Nat. Rev. Mater. 3 194 |
[25] | Kang J and Wang L W 2017 J. Phys. Chem. Lett. 8 489 |
[26] | Rakita Y, Lubomirsky I, and Cahen D 2019 Mater. Horiz. 6 1297 |
[27] | Cohen A V, Egger D A, Rappe A M, and Kronik L 2019 J. Phys. Chem. Lett. 10 4490 |
[28] | Gehrmann C and Egger D A 2019 Nat. Commun. 10 3141 |
[29] | Yang R X, Skelton J M, da Silva E L, Frost J M, and Walsh A 2020 J. Chem. Phys. 152 024703 |
[30] | Huang Y, Yin W J, and He Y 2018 J. Phys. Chem. C 122 1345 |
[31] | Zhang X, Turiansky M E, and Van de Walle C G 2021 Cell Rep. Phys. Sci. 2 100604 |
[32] | Zhang J, Zhong Y, and Li G 2021 J. Phys. Chem. C 125 27016 |
[33] | Ming C, Wang H, West D, Zhang S, and Sun Y Y 2022 J. Mater. Chem. A 10 3018 |
[34] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[35] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[36] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[37] | Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, and Burke K 2008 Phys. Rev. Lett. 100 136406 |
[38] | Nosé S 1984 Mol. Phys. 52 255 |
[39] | Hoover W G 1985 Phys. Rev. A 31 1695 |
[40] | Brivio F, Walker A B, and Walsh A 2013 APL Mater. 1 042111 |
[41] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[42] | Hellman O, Steneteg P, Abrikosov I A, and Simak S I 2013 Phys. Rev. B 87 104111 |
[43] | Glazer A M 1972 Acta Crystallogr. Sect. B 28 3384 |
[44] | Ming C, Yang K, Zeng H, Zhang S, and Sun Y Y 2020 Mater. Horiz. 7 2985 |
[45] | Li Y, Zhang C, Zhang X, Huang D, Shen Q, Cheng Y, and Huang W 2017 Appl. Phys. Lett. 111 162106 |
[46] | Zhang X P, Li Y N, Sun Y Y, and Zhang T 2019 Angew. Chem. Int. Ed. 58 18394 |
[47] | Wu X, Gao W, Chai J, Ming C, Chen M, Zeng H, Zhang P, Zhang S, and Sun Y Y 2021 Sci. Chin. Mater. 64 2976 |
[48] | Zhang X, Turiansky M E, and Van de Walle C G 2020 J. Phys. Chem. C 124 6022 |
[49] | Du M H 2015 J. Phys. Chem. Lett. 6 1461 |
[50] | Sun Y Y, Shi J, Lian J, Gao W, Agiorgousis M L, Zhang P, and Zhang S 2016 Nanoscale 8 6284 |
[51] | Chen H Y, Yue Z, Ren D, Zeng H, Wei T, Zhao K, Yang R, Qiu P, Chen L, and Shi X 2019 Adv. Mater. 31 1806518 |
[52] | Chen L, Liu J, Jiang C, Zhao K, Chen H, Shi X, Chen L, Sun C, Zhang S, Wang Y et al. 2019 Adv. Mater. 31 1804919 |
[53] | Zhang X, Bu Z, Lin S, Chen Z, Li W, and Pei Y 2020 Joule 4 986 |
[54] | Zhao K, Qiu P, Shi X, and Chen L 2020 Adv. Funct. Mater. 30 1903867 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|