PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Synergistic Influences of Kinetic Effects from Thermal Particles and Fast Ions on Internal Kink Mode |
Yutian Miao1,2, G. Z. Hao2*, Yue Liu1*, H. D. He2, W. Chen2, Y. Q. Wang2, A. K. Wang2, and M. Xu2 |
1Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China 2Southwestern Institute of Physics, Chengdu 610041, China
|
|
Cite this article: |
Yutian Miao, G. Z. Hao, Yue Liu et al 2021 Chin. Phys. Lett. 38 085202 |
|
|
Abstract The kinetic effects of thermal particles and fast ions on internal kink (IK) mode are numerically investigated by the MHD-kinetic hybrid code MARS-K. It is shown that either thermal particles or fast ions have stabilizing influence on IK. However, the former can not fully stabilize IK, and the later can suppress the IK. In addition, the synergistic effect from thermal particles and fast ions induces more stronger damping on IK. The kinetic effects from particles significantly raise the critical value of poloidal beta ($\beta_{\rm p}^{\rm crit}$) for driving IK in the toroidal plasma. This implies a method of controlling IK or sawtooth in the high-$\beta_{\rm p}$ discharge scenario of tokamak. It is noted that, at the $q=1$ rational surface, mode structure becomes more sharp due to the self-consistent modification by particles' kinetic effect.
|
|
Received: 08 April 2021
Editors' Suggestion
Published: 02 August 2021
|
|
PACS: |
96.25.St
|
(Plasma and MHD instabilities)
|
|
96.50.Vg
|
(Energetic particles)
|
|
52.55.Pi
|
(Fusion products effects (e.g., alpha-particles, etc.), fast particle effects)
|
|
52.65.-y
|
(Plasma simulation)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFE03050003), the National Magnetic Confinement Fusion Science Program (Grant No. 2018YFE0304103), and the National Natural Science Foundation of China (Grant Nos. 11775067 and 11905067). |
|
|
[1] | von Goeler S, Stodiek W, and Sauthoff N 1974 Phys. Rev. Lett. 33 1201 |
[2] | Shafranov V D et al. 1970 Sov. Phys. Tech. Phys. 15 175 |
[3] | Bussac M N, Pellat R, Edery D, and Soule J L 1975 Phys. Rev. Lett. 35 1638 |
[4] | Coppi B, Galvao R, Pellat R, Rosenbluth M, and Rutherford P 1995 Phys. Plasmas 2 533 |
[5] | Porcelli F, Boucher D, and Rosenbluth M N 1996 Plasma Phys. Control. Fusion 38 2163 |
[6] | Gibson A, Sekiguchi T, Lackner K, Bodner S, and Hancox R 1987 Nucl. Fusion 27 481 |
[7] | White R B, Rutherford P H, Colestock P, and Bussac M N 1988 Phys. Rev. Lett. 60 2038 |
[8] | Hastie R J, Hender T C, Carreras B A, Charlton L A, and Holmes J A 1987 Phys. Fluids 30 1756 |
[9] | Editors I P B 1999 Nucl. Fusion 39 2137 |
[10] | Liu C, White R B, and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 |
[11] | White R B, Chen L, Romanelli F, and Hay R 1985 Phys. Fluids 28 278 |
[12] | Coppi B and Porcelli F 1986 Phys. Rev. Lett. 57 2272 |
[13] | Coppi B, Migliuolo S, and Porcelli F 1988 Phys. Fluids 31 1630 |
[14] | Cheng C Z 1990 Phys. Fluids B: Plasma Phys. 2 1427 |
[15] | Porcelli F 1991 Plasma Phys. Control. Fusion 33 1601 |
[16] | Betti R and Freidberg J P 1993 Phys. Rev. Lett. 70 3428 |
[17] | Shi P W, Chen W, and Duan X R 2021 Chin. Phys. Lett. 38 035202 |
[18] | Hu B, Betti R, and Manickam J 2006 Phys. Plasmas 13 112505 |
[19] | Miao Y T et al. 2020 Nucl. Fusion 60 096022 |
[20] | Liu Y Q, Chu M S, Chapman I T, and Hender T C 2008 Phys. Plasmas 15 112503 |
[21] | Antonsen Jr T M and Lee Y C 1982 Phys. Fluids 25 132 |
[22] | Berkery J W, Sabbagh S A, Betti R, Bell R E, Gerhardt S P, LeBlanc B P, and Yuh H 2011 Phys. Rev. Lett. 106 075004 |
[23] | Xu M et al. 2019 Nucl. Fusion 59 112017 |
[24] | Wu T T, Liu Y Q, Liu Y, Zhou L N, and He H D 2019 Phys. Plasmas 26 102102 |
[25] | Liu Y Q et al. 2014 Phys. Plasmas 21 056105 |
[26] | Antonsen T M and Bondeson A 1993 Phys. Fluids B: Plasma Phys. 5 4090 |
[27] | Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|