Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 017301    DOI: 10.1088/0256-307X/38/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strain Tunable Berry Curvature Dipole, Orbital Magnetization and Nonlinear Hall Effect in WSe$_{2}$ Monolayer
Mao-Sen Qin , Peng-Fei Zhu , Xing-Guo Ye , Wen-Zheng Xu , Zhen-Hao Song , Jing Liang , Kaihui Liu , and Zhi-Min Liao*
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Mao-Sen Qin , Peng-Fei Zhu , Xing-Guo Ye  et al  2021 Chin. Phys. Lett. 38 017301
Download: PDF(2896KB)   PDF(mobile)(2891KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic topology is generally related to the Berry curvature, which can induce the anomalous Hall effect in time-reversal symmetry breaking systems. Intrinsic monolayer transition metal dichalcogenides possesses two nonequivalent $K$ and $K'$ valleys, having Berry curvatures with opposite signs, and thus vanishing anomalous Hall effect in this system. Here we report the experimental realization of asymmetrical distribution of Berry curvature in a single valley in monolayer WSe$_2$ via applying uniaxial strain to break $C_{3v}$ symmetry. As a result, although the Berry curvature itself is still opposite in $K$ and $K'$ valleys, the two valleys would contribute equally to nonzero Berry curvature dipole. Upon applying electric field ${\boldsymbol E}$, the emergent Berry curvature dipole ${\boldsymbol D}$ would lead to an out-of-plane orbital magnetization $M \propto {\boldsymbol D} \cdot {\boldsymbol E}$, which further induces an anomalous Hall effect with a linear response to $E^2$, known as nonlinear Hall effect. We show the strain modulated transport properties of nonlinear Hall effect in monolayer WSe$_2$ with moderate hole-doping by gating. The second-harmonic Hall signals show quadratic dependence on electric field, and the corresponding orbital magnetization per current density $M/J$ can reach as large as 60. In contrast to the conventional Rashba–Edelstein effect with in-plane spin polarization, such current-induced orbital magnetization is along the out-of-plane direction, thus promising for high-efficient electrical switching of perpendicular magnetization.
Received: 12 November 2020      Published: 03 December 2020
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703703 and 2016YFA0300802), and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/017301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/017301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mao-Sen Qin 
Peng-Fei Zhu 
Xing-Guo Ye 
Wen-Zheng Xu 
Zhen-Hao Song 
Jing Liang 
Kaihui Liu 
and Zhi-Min Liao
[1] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[2] Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348
[3] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
[4] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[5] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[6] Dau M T, Vergnaud C, Marty A, Beigné C, Gambarelli S, Maurel V, Journot T, Hyot B, Guillet T, Grévin B, Okuno H and Jamet M 2019 Nat. Commun. 10 5796
[7] Dai X, Du Z Z and Lu H Z 2017 Phys. Rev. Lett. 119 166601
[8] Xiao D, Shi J and Niu Q 2005 Phys. Rev. Lett. 95 137204
[9] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[10] Deyo E, Golub L E, Ivchenko E L and Spivak B 2009 arXiv:0904.1917 [cond-mat.mes-hall]
[11] You J S, Fang S, Xu S Y, Kaxiras E and Low T 2018 Phys. Rev. B 98 121109
[12] Du Z Z, Wang C M, Li S, Lu H Z and Xie X C 2019 Nat. Commun. 10 3047
[13] Zhang Y, van den Brink J, Felser C and Yan B 2018 2D Mater. 5 044001
[14] Xiao C, Du Z Z and Niu Q 2019 Phys. Rev. B 100 165422
[15] Yu X Q, Zhu Z G, You J S, Low T and Su G 2019 Phys. Rev. B 99 201410
[16] Du Z Z, Wang C M, Sun H P, Lu H Z and Xie X C 2020 arXiv:2004.09742 [cond-mat.mes-hall]
[17] Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N and Jarillo-Herrero P 2018 Nat. Phys. 14 900
[18] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337
[19] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324
[20] Wang H and Qian X F 2019 npj Comput. Mater. 5 119
[21] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028
[22] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[23] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[24] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[25] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[26] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X 2013 Nat. Phys. 9 149
[27] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[28] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[29] Lee J, Wang Z, Xie H, Mak K F and Shan J 2017 Nat. Mater. 16 887
[30] Son J, Kim K H, Ahn Y H, Lee H W and Lee J 2019 Phys. Rev. Lett. 123 036806
[31] Peng J, Luo H, Lin D, Xu H, He T and Jin W 2004 Appl. Phys. Lett. 85 6221
[32] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
[33] Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, Wang J, Wang J, Cheng Z, Ye Z G, Luo J, Shrout T R and Chen L Q 2016 Nat. Commun. 7 13807
[34] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H and Wu S M 2019 Nat. Nanotechnol. 14 668
[35] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[36] Zhang Q, Cheng Y, Gan L Y and Schwingenschlögl U 2013 Phys. Rev. B 88 245447
[37] Shi H, Pan H, Zhang Y W and Yakobson B I 2013 Phys. Rev. B 87 155304
[38] Rostami H, Roldán R, Cappelluti E, Asgari R and Guinea F 2015 Phys. Rev. B 92 195402
[39] Peelaers H and Van de Walle C G 2012 Phys. Rev. B 86 241401
[40] Chen Y, Zhang Y, Keil R, Zopf M, Ding F and Schmidt O G 2017 Nano Lett. 17 7864
[41] Tsai M Y, Tarasov A, Hesabi Z R, Taghinejad H, Campbell P M, Joiner C A, Adibi A and Vogel E M 2015 ACS Appl. Mater. & Interfaces 7 12850
[42] Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D and Fal'ko V 2015 2D Mater. 2 022001
Viewed
Full text


Abstract