Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 068501    DOI: 10.1088/0256-307X/37/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition
Yu Zhao1, Yan Teng1, Jing-Jun Miao1, Qi-Hua Wu1, Jing-Jing Gao1, Xin Li1, Xiu-Jun Hao1, Ying-Chun Zhao2, Xu Dong2, Min Xiong2, Yong Huang1**
1Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
2Nano-fabrication Facility, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Cite this article:   
Yu Zhao, Yan Teng, Jing-Jun Miao et al  2020 Chin. Phys. Lett. 37 068501
Download: PDF(609KB)   PDF(mobile)(603KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mid-wavelength infrared planar photodiodes were demonstrated, in which both the epitaxy growth of InAs/GaSb superlattices and the thermal diffusion of p-type dopant were performed in production-scale metal–organic chemical vapor deposition reactors. The formation of a planar homojunction was confirmed by secondary ion mass spectroscopy and its $I$–$V$ characteristics. A cut-off wavelength around 5 μm was determined in 77 K optical characterization, and photo-current as high as 600 nA was collected from a reverse-biased planar diode of 640 μm diameter. These preliminary results were obtained despite the structural degradation revealed by x-ray diffraction, and we attribute the degradation to the concert of thermal annealing and high Zn concentration behind the diffusion front.
Received: 05 March 2020      Published: 26 May 2020
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: *Supported by the National Natural Science Foundation of China (Grant Nos. 61874179, 61804161, and 61605236).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/068501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhao
Yan Teng
Jing-Jun Miao
Qi-Hua Wu
Jing-Jing Gao
Xin Li
Xiu-Jun Hao
Ying-Chun Zhao
Xu Dong
Min Xiong
Yong Huang
[1] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304
[2] Forrai D et al 2018 Infrared Phys. & Technol. 95 164
[3] Fastenau J M et al 2013 Infrared Phys. & Technol. 59 158
[4] Liu A W K et al 2015 Proc. SPIE 9451 94510T
[5] Gin A et al 2004 Thin Solid Films 447 489
[6] Lowe M J et al 2002 J. Cryst. Growth 237 196
[7] Chen G et al 2013 Appl. Phys. Lett. 103 223501
[8] Dixon P et al 2009 Proc. SPIE 7307 730706
[9] Wollrab R et al 2011 J. Electron. Mater. 40 1618
[10] Shtrichman I et al 2007 Proc. SPIE 6542 65423M
[11] Rajavel R et al 2009 Proc. SPIE 7298 72981S
[12]Bogdanov S 2014 PhD Dissertation (Evanston: Northwestern University)
[13] Huang Y et al 2017 IEEE J. Quantum Electron. 53 2740121
[14] Teng Y et al 2019 IEEE Photon. Technol. Lett. 31 185
[15] Zhao Y et al 2020 IEEE Photon. Technol. Lett. 32 19
[16] Pitts O J et al 2012 International Conference on Indium Phosphide and Related Materials (Santa Barbara, CA, USA 27–30 August 2012) p 225
[17] Cervera C et al 2009 J. Appl. Phys. 106 033709
[18] Wang T et al 2019 Appl. Phys. Express 12 122009
[19] da Cunha S F and Bougnot J 1974 Phys. Status Solidi A 22 205
[20] Iwamura Y and Watanabe N 2000 Jpn. J. Appl. Phys. 39 5740
[21] Khald H, Mani H and Joullie A 1988 J. Appl. Phys. 64 4768
[22] Nicols S P et al 2001 Physica B 308 854
[23] Schlegl T, Sulima O V and Bett A W 2004 AIP Conf. Proc. 738 396
[24] Lyadov Y et al 2010 J. Appl. Phys. 107 053518
[25] van Gurp G J et al 1990 J. Appl. Phys. 67 2919
[26] Ky N H et al F K 1993 J. Appl. Phys. 73 3769
[27] Plis E et al 2008 Appl. Phys. Lett. 93 123507
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 068501
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 068501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 068501
[4] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 068501
[5] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 068501
[6] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 068501
[7] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 068501
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 068501
[9] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 068501
[10] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 068501
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 068501
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 068501
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 068501
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 068501
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 068501
Viewed
Full text


Abstract