GENERAL |
|
|
|
|
Critical Scaling Behaviors of Entanglement Spectra |
Qi-Cheng Tang1,2, Wei Zhu1,2** |
1School of Science, Westlake University, Hangzhou 310024 2Institute of Natural Sciences, Westlake Institute of Advanced Study, Hangzhou 310024
|
|
Cite this article: |
Qi-Cheng Tang, Wei Zhu 2020 Chin. Phys. Lett. 37 010301 |
|
|
Abstract We investigate the evolution of entanglement spectra under a global quantum quench from a short-range correlated state to the quantum critical point. Motivated by the conformal mapping, we find that the dynamical entanglement spectra demonstrate distinct finite-size scaling behaviors from the static case. As a prototypical example, we compute real-time dynamics of the entanglement spectra of a one-dimensional transverse-field Ising chain. Numerical simulation confirms that the entanglement spectra scale with the subsystem size $l$ as $\sim$$l^{-1}$ for the dynamical equilibrium state, much faster than $\propto$ $\ln^{-1} l$ for the critical ground state. In particular, as a byproduct, the entanglement spectra at the long time limit faithfully gives universal tower structure of underlying Ising criticality, which shows the emergence of operator-state correspondence in the quantum dynamics.
|
|
Received: 25 October 2019
Published: 08 November 2019
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
11.25.Hf
|
(Conformal field theory, algebraic structures)
|
|
|
Fund: Supported by the start-up funding from Westlake University, and the National Natural Science Foundation of China under Grant No 11974288. |
|
|
[1] | Di Francesco P , Mathieu P, Sénéchal D 1997 Conformal Field Theory, Graduate Texts in Contemporary Physics (New York: Springer) | [2] | Belavin A A, Polyakov A M and Zamolodchikov A B 1984 J. Stat. Phys. 34 763 | [3] | Belavin A, Polyakov A and Zamolodchikov A 1984 Nucl. Phys. B 241 333 | [4] | Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 52 1575 | [5] | Cardy J L 1986 Nucl. Phys. B 270 186 | [6] | Cardy J L 1986 Nucl. Phys. B 275 200 | [7] | Srednicki M 1993 Phys. Rev. Lett. 71 666 | [8] | Holzhey C, Larsen F and Wilczek F 1994 Nucl. Phys. B 424 443 | [9] | Calabrese P and Cardy J 2004 J. Stat. Mech. 2004 P06002 | [10] | Korepin V E 2004 Phys. Rev. Lett. 92 096402 | [11] | Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010 | [12] | Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801 | [13] | Fradkin E and Moore J E 2006 Phys. Rev. Lett. 97 050404 | [14] | Calabrese P and Cardy J 2007 J. Stat. Mech. 2007 P10004 | [15] | Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329 | [16] | Hsu B, Mulligan M, Fradkin E and Kim E A 2009 Phys. Rev. B 79 115421 | [17] | Calabrese P and Cardy J 2009 J. Phys. A 42 504005 | [18] | Nienhuis B, Campostrini M and Calabrese P 2009 J. Stat. Mech. 2009 P02063 | [19] | Alba V, Tagliacozzo L and Calabrese P 2010 Phys. Rev. B 81 060411 | [20] | Calabrese P, Campostrini M, Essler F and Nienhuis B 2010 Phys. Rev. Lett. 104 095701 | [21] | Calabrese P, Cardy J and Tonni E 2012 Phys. Rev. Lett. 109 130502 | [22] | Calabrese P, Cardy J and Tonni E 2013 J. Stat. Mech. 2013 P02008 | [23] | Cardy J 2014 Phys. Rev. Lett. 112 220401 | [24] | Calabrese P, Cardy J and Tonni E 2015 J. Phys. A 48 015006 | [25] | Coser A, Tonni E and Calabrese P 2014 J. Stat. Mech. 2014 P12017 | [26] | Cardy J 2016 J. Stat. Mech. 2016 023103 | [27] | Calabrese P and Cardy J 2016 J. Stat. Mech. 2016 064003 | [28] | Cardy J and Tonni E 2016 J. Stat. Mech. 2016 123103 | [29] | Alba V, Calabrese P and Tonni E 2018 J. Phys. A 51 024001 | [30] | Wen X, Ryu S and Ludwig A W W 2018 J. Stat. Mech. 2018 113103 | [31] | Giudici G, Mendes-Santos T, Calabrese P and Dalmonte M 2018 Phys. Rev. B 98 134403 | [32] | Giulio G D, Arias R and Tonni E 2019 arXiv:1905.01144 | [33] | Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 | [34] | Pollmann F, Mukerjee S, Turner A M and Moore J E 2009 Phys. Rev. Lett. 102 255701 | [35] | Metlitski M A, Fuertes C A and Sachdev S 2009 Phys. Rev. B 80 115122 | [36] | Whitsitt S, Witczak-Krempa W and Sachdev S 2017 Phys. Rev. B 95 045148 | [37] | Zhu W, Chen X, He Y C and Witczak-Krempa W 2018 Sci. Adv. 4 eaat5535 | [38] | Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 | [39] | Laflorencie N 2016 Phys. Rep. 646 1 | [40] | Fidkowski L 2010 Phys. Rev. Lett. 104 130502 | [41] | Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501 | [42] | Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102 | [43] | Qi X L, Katsura H and Ludwig A W W 2012 Phys. Rev. Lett. 108 196402 | [44] | Thomale R, Arovas D P and Bernevig B A 2010 Phys. Rev. Lett. 105 116805 | [45] | De Chiara G , Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208 | [46] | Lepori L, De Chiara G and Sanpera A 2013 Phys. Rev. B 87 235107 | [47] | Giampaolo S M, Montangero S, Dell'Anno F, De Siena S and Illuminati F 2013 Phys. Rev. B 88 125142 | [48] | Lundgren R, Blair J, Laurell P, Regnault N, Fiete G A, Greiter M and Thomale R 2016 Phys. Rev. B 94 081112 | [49] | Schuler M, Whitsitt S, Henry L P, Sachdev S and Läuchli A M 2016 Phys. Rev. Lett. 117 210401 | [50] | Whitsitt S, Schuler M, Henry L P, Läuchli A M and Sachdev S 2017 Phys. Rev. B 96 035142 | [51] | Stojevic V, Haegeman J, McCulloch I P, Tagliacozzo L and Verstraete F 2015 Phys. Rev. B 91 035120 | [52] | Läuchli A M 2013 arXiv:1303.0741 | [53] | Laflorencie N and Rachel S 2014 J. Stat. Mech. 2014 P11013 | [54] | Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407 | [55] | Peschel I and Eisler V 2009 J. Phys. A 42 504003 | [56] | Torlai G, Tagliacozzo L and Chiara G D 2014 J. Stat. Mech. 2014 P06001 | [57] | Vidal G 2004 Phys. Rev. Lett. 93 040502 | [58] | Chepiga N and Mila F 2017 Phys. Rev. B 96 054425 | [59] | Milsted A and Vidal G 2017 Phys. Rev. B 96 245105 | [60] | Zou Y, Milsted A and Vidal G 2018 Phys. Rev. Lett. 121 230402 | [61] | Zou Y and Vidal G 2019 arXiv:1907.10704 | [62] | Surace J, Tagliacozzo L and Tonni E 2019 arXiv:1909.07381 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|