Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 010301    DOI: 10.1088/0256-307X/37/1/010301
GENERAL |
Critical Scaling Behaviors of Entanglement Spectra
Qi-Cheng Tang1,2, Wei Zhu1,2**
1School of Science, Westlake University, Hangzhou 310024
2Institute of Natural Sciences, Westlake Institute of Advanced Study, Hangzhou 310024
Cite this article:   
Qi-Cheng Tang, Wei Zhu 2020 Chin. Phys. Lett. 37 010301
Download: PDF(1294KB)   PDF(mobile)(1856KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the evolution of entanglement spectra under a global quantum quench from a short-range correlated state to the quantum critical point. Motivated by the conformal mapping, we find that the dynamical entanglement spectra demonstrate distinct finite-size scaling behaviors from the static case. As a prototypical example, we compute real-time dynamics of the entanglement spectra of a one-dimensional transverse-field Ising chain. Numerical simulation confirms that the entanglement spectra scale with the subsystem size $l$ as $\sim$$l^{-1}$ for the dynamical equilibrium state, much faster than $\propto$ $\ln^{-1} l$ for the critical ground state. In particular, as a byproduct, the entanglement spectra at the long time limit faithfully gives universal tower structure of underlying Ising criticality, which shows the emergence of operator-state correspondence in the quantum dynamics.
Received: 25 October 2019      Published: 08 November 2019
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  11.25.Hf (Conformal field theory, algebraic structures)  
Fund: Supported by the start-up funding from Westlake University, and the National Natural Science Foundation of China under Grant No 11974288.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/010301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Cheng Tang
Wei Zhu
[1]Di Francesco P , Mathieu P, Sénéchal D 1997 Conformal Field Theory, Graduate Texts in Contemporary Physics (New York: Springer)
[2]Belavin A A, Polyakov A M and Zamolodchikov A B 1984 J. Stat. Phys. 34 763
[3]Belavin A, Polyakov A and Zamolodchikov A 1984 Nucl. Phys. B 241 333
[4]Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 52 1575
[5]Cardy J L 1986 Nucl. Phys. B 270 186
[6]Cardy J L 1986 Nucl. Phys. B 275 200
[7]Srednicki M 1993 Phys. Rev. Lett. 71 666
[8]Holzhey C, Larsen F and Wilczek F 1994 Nucl. Phys. B 424 443
[9]Calabrese P and Cardy J 2004 J. Stat. Mech. 2004 P06002
[10]Korepin V E 2004 Phys. Rev. Lett. 92 096402
[11]Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010
[12]Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
[13]Fradkin E and Moore J E 2006 Phys. Rev. Lett. 97 050404
[14]Calabrese P and Cardy J 2007 J. Stat. Mech. 2007 P10004
[15]Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329
[16]Hsu B, Mulligan M, Fradkin E and Kim E A 2009 Phys. Rev. B 79 115421
[17]Calabrese P and Cardy J 2009 J. Phys. A 42 504005
[18]Nienhuis B, Campostrini M and Calabrese P 2009 J. Stat. Mech. 2009 P02063
[19]Alba V, Tagliacozzo L and Calabrese P 2010 Phys. Rev. B 81 060411
[20]Calabrese P, Campostrini M, Essler F and Nienhuis B 2010 Phys. Rev. Lett. 104 095701
[21]Calabrese P, Cardy J and Tonni E 2012 Phys. Rev. Lett. 109 130502
[22]Calabrese P, Cardy J and Tonni E 2013 J. Stat. Mech. 2013 P02008
[23]Cardy J 2014 Phys. Rev. Lett. 112 220401
[24]Calabrese P, Cardy J and Tonni E 2015 J. Phys. A 48 015006
[25]Coser A, Tonni E and Calabrese P 2014 J. Stat. Mech. 2014 P12017
[26]Cardy J 2016 J. Stat. Mech. 2016 023103
[27]Calabrese P and Cardy J 2016 J. Stat. Mech. 2016 064003
[28]Cardy J and Tonni E 2016 J. Stat. Mech. 2016 123103
[29]Alba V, Calabrese P and Tonni E 2018 J. Phys. A 51 024001
[30]Wen X, Ryu S and Ludwig A W W 2018 J. Stat. Mech. 2018 113103
[31]Giudici G, Mendes-Santos T, Calabrese P and Dalmonte M 2018 Phys. Rev. B 98 134403
[32]Giulio G D, Arias R and Tonni E 2019 arXiv:1905.01144
[33]Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[34]Pollmann F, Mukerjee S, Turner A M and Moore J E 2009 Phys. Rev. Lett. 102 255701
[35]Metlitski M A, Fuertes C A and Sachdev S 2009 Phys. Rev. B 80 115122
[36]Whitsitt S, Witczak-Krempa W and Sachdev S 2017 Phys. Rev. B 95 045148
[37]Zhu W, Chen X, He Y C and Witczak-Krempa W 2018 Sci. Adv. 4 eaat5535
[38]Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[39]Laflorencie N 2016 Phys. Rep. 646 1
[40]Fidkowski L 2010 Phys. Rev. Lett. 104 130502
[41]Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501
[42]Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102
[43]Qi X L, Katsura H and Ludwig A W W 2012 Phys. Rev. Lett. 108 196402
[44]Thomale R, Arovas D P and Bernevig B A 2010 Phys. Rev. Lett. 105 116805
[45]De Chiara G , Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208
[46]Lepori L, De Chiara G and Sanpera A 2013 Phys. Rev. B 87 235107
[47]Giampaolo S M, Montangero S, Dell'Anno F, De Siena S and Illuminati F 2013 Phys. Rev. B 88 125142
[48]Lundgren R, Blair J, Laurell P, Regnault N, Fiete G A, Greiter M and Thomale R 2016 Phys. Rev. B 94 081112
[49]Schuler M, Whitsitt S, Henry L P, Sachdev S and Läuchli A M 2016 Phys. Rev. Lett. 117 210401
[50]Whitsitt S, Schuler M, Henry L P, Läuchli A M and Sachdev S 2017 Phys. Rev. B 96 035142
[51]Stojevic V, Haegeman J, McCulloch I P, Tagliacozzo L and Verstraete F 2015 Phys. Rev. B 91 035120
[52]Läuchli A M 2013 arXiv:1303.0741
[53]Laflorencie N and Rachel S 2014 J. Stat. Mech. 2014 P11013
[54]Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[55]Peschel I and Eisler V 2009 J. Phys. A 42 504003
[56]Torlai G, Tagliacozzo L and Chiara G D 2014 J. Stat. Mech. 2014 P06001
[57]Vidal G 2004 Phys. Rev. Lett. 93 040502
[58]Chepiga N and Mila F 2017 Phys. Rev. B 96 054425
[59]Milsted A and Vidal G 2017 Phys. Rev. B 96 245105
[60]Zou Y, Milsted A and Vidal G 2018 Phys. Rev. Lett. 121 230402
[61]Zou Y and Vidal G 2019 arXiv:1907.10704
[62]Surace J, Tagliacozzo L and Tonni E 2019 arXiv:1909.07381
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 010301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 010301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 010301
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 010301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 010301
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 010301
[9] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 010301
[10] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 010301
[11] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 010301
[12] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 010301
[13] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 010301
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 010301
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 010301
Viewed
Full text


Abstract