Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 070302    DOI: 10.1088/0256-307X/36/7/070302
GENERAL |
Programmable Quantum Processor with Quantum Dot Qubits
Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang**
College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035
Cite this article:   
Yao Chen, Fo-Liang Lin, Xi Liang et al  2019 Chin. Phys. Lett. 36 070302
Download: PDF(564KB)   PDF(mobile)(559KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor (PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of $n$ qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.
Received: 18 February 2019      Published: 20 June 2019
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/070302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yao Chen
Fo-Liang Lin
Xi Liang
Nian-Quan Jiang
[1]Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2]Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[3]Veldhorst M, Yang C H, Hwang J C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E and Itoh K M 2015 Nature 526 410
[4]Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[5]Taylor J M, Srinivasa V and Medford J 2013 Phys. Rev. Lett. 111 050502
[6]Laird E A, Taylor J M, DiVincenzo D P, Marcus C M, Hanson M P and Gossard A C 2010 Phys. Rev. B 82 075403
[7]Kim D, Shi Z, Simmons C B, Ward D R, Prance J R, Koh T S, Gamble J K, Savage D E, Lagally M G and Friesen M 2014 Nature 511 70
[8]Shi Z, Simmons C B, Prance J R, Gamble J K, Koh T S, Shim Y P, Xuedong Hu, Savage D E, Lagally M G, Eriksson M A, Friesen M and Coppersmith S N 2012 Phys. Rev. Lett. 108 140503
[9]Shi Z, Simmons C B, Ward D R, Prance J R, Wu X, Koh T S, Gamble J K, Savage D E, Lagally M G and Friesen M 2014 Nat. Commun. 5 3020
[10]Chen K J, Xu J, Qian X Y et al 2013 Chin. Phys. Lett. 30 077303
[11]Zhou C, Tu T, L Wang et al 2012 Chin. Phys. Lett. 29 117303
[12]Taylor J M, Engel H A, Dur W, Yacoby A, Marcus C M, Zoller P and Lukin M D 2005 Nat. Phys. 1 177
[13]Veldhorst M, Eenink H G J, Yang C H and Dzurak A S 2017 Nat. Commun. 8 1766
[14]Taylor J M and Lukin M D 2006 arXiv:0605144
[15]Kawakami E, Scarlino P, Ward D R et al 2014 Nat. Nanotechnol. 9 666
[16]Veldhorst M, Hwang. J C C, Yang C H et al 2014 Nat. Nanotechnol. 9 981
[17]Muhonen J T, Dehollain J P, Laucht A et al 2014 Nat. Nanotechnol. 9 986
[18]Yoneda J, Takeda K, Otsuka T et al 2018 Nat. Nanotechnol. 13 102
[19]Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[20]Childress L, Sorensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[21]Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302 R
[22]Taylor J M, Petta J R, Johnson A C, Yacoby A, Marcus C M and Lukin M D 2007 Phys. Rev. B 76 035315
[23]Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2010 Nano Lett. 10 2789
[24]Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A 2012 Phys. Rev. Lett. 108 046807
[25]Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[26]Stepanenko D and Burkard G 2007 Phys. Rev. B 75 085324
[27]Ward D R, Dohun Kim, Savage D E, Lagally M G, Foote R H, Friesen M, Coppersmith S N and Eriksson M A 2016 npj Quantum Inf. 2 16032
[28]Li H O, Cao G, Yu G D, Xiao M, Guo G C, Jiang H W and Guo G P 2015 Nat. Commun. 6 7681
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 070302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 070302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 070302
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 070302
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070302
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 070302
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 070302
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 070302
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 070302
Viewed
Full text


Abstract