1National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 3Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 4State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 5School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Abstract:Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid (QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO$_4$ stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh$_2$ (A = alkali or monovalent ions, Re = rare earth, Ch = O, S, Se). The family compounds share the same structure ($R\bar{3}m$) as YbMgGaO$_4$, and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the $c$-axis. Specific heat and magnetic susceptibility measurements on NaYbO$_2$, NaYbS$_2$ and NaYbSe$_2$ single crystals and polycrystals, reveal no structural or magnetic transition down to 50 mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO$_4$. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages. This makes the family an ideal platform for fundamental research of QSLs and its promising applications.
Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H , Nocera D G and Lee Y S 2007 Phys. Rev. Lett.98 107204
[8]
Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez R, Jose A, Broholm C and Lee Y S 2012 Nature492 406
Gardner J S, Dunsiger S R, Gaulin B D, Gingras M J P, Greedan J E, Kiefl R F, Lumsden M D, MacFarlane W A, Raju N P, Sonier J E, Swainson I and Tun Z 1999 Phys. Rev. Lett.82 1012
[22]
Ross K A, Ruff J P C, Adams C P, Gardner J S, Dabkowska H A, Qiu Y, Copley J R D and Gaulin B D 2009 Phys. Rev. Lett.103 227202
Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P and Zhang Q M 2016 Phys. Rev. Lett.117 097201
[36]
Shen Y, LiY D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature540 559
[37]
Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone M B, Zhou H D and Mourigal M 2017 Nat. Phys.13 117
Li Y S, Adroja D, Voneshen D, Bewley R I, Zhang Q M, Tsirlin A A and Gegenwart P 2017 Nat. Commun.8 15814
[43]
Ma Z, Wang J H, Dong Z Y, ZhangJ, Li S C, Zheng S H, Yu Y J, Wang W, Che L Q, Ran K J, Bao S, Cai Z W, Permk P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S Y, Li J X and Wen J S 2018 Phys. Rev. Lett.120 087201
[44]
Shen Y, Li, Y D, Walker H C, Steffens P, Boehm M, Zhang X W, Shen S D, Wo H L, Chen G and J2017 arXiv:1708.06655
Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C , Yasuoka H, van den Brink J, Klauss H H, Inosov D S and Doert T 2018 arXiv:1809.01947