Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice
Yanxing Yang1, Kaiwen Chen1, Zhaofeng Ding1, Adrian D. Hillier2, and Lei Shu1,3,4*
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China 2ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract:The structure and magnetic properties of rare-earth ions Tm$^{3+}$ Kagomé lattice Tm$_3$Sb$_3$Mg$_2$O$_{14}$ are studied by x-ray diffraction, magnetic susceptibility and muon spin relaxation (μSR) experiments. The existence of a small amount of Tm/Mg site-mixing disorder is revealed. DC magnetic susceptibility measurement shows that Tm$^{3+}$ magnetic moments are antiferromagnetically correlated with a negative Curie–Weiss temperature of $-$26.3 K. Neither long-range magnetic order nor spin-glass transition is observed by DC and AC magnetic susceptibility, and confirmed by μSR experiment down to 0.1 K. However, the emergence of short-range magnetic order is indicated by the zero-field μSR experiments, and the absence of spin dynamics at low temperatures is evidenced by the longitudinal-field μSR technique. Compared with the results of Tm$_3$Sb$_3$Zn$_2$O$_{14}$, another Tm-based Kagomé lattice with much more site-mixing disorder, the gapless spin liquid like behaviors in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ can be induced by disorder effect. Samples with perfect geometrical frustration are in urgent demand to establish whether QSL exists in this kind of materials with rare-earth Kagomé lattice.
. [J]. 中国物理快报, 2022, 39(10): 107502-.
Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice. Chin. Phys. Lett., 2022, 39(10): 107502-.
Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li J X, and Wen J 2018 Phys. Rev. Lett.120 087201
Ma Z, Dong Z Y, Wu S, Zhu Y, Bao S, Cai Z, Wang W, Shangguan Y, Wang J, Ran K, Yu D, Deng G, Mole R A, Li H F, Li J X, and Wen J 2020 Phys. Rev. B102 224415
Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Alberto H, and Watanabe I 2022 Nat. Rev. Methods Primers2 4
Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Lu X, and Dai P 2021 Phys. Rev. X11 021044
[34]
Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Huang Y Y, Cheng E J, Yu Y J, Hillier A D, Chen X H, Wu T, Li S Y, and Shu L 2021 arXiv:2112.06523