Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain
Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang** , Yi Zhao
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027
Abstract :Ge complementary tunneling field-effect transistors (TFETs) are fabricated with the NiGe metal source/drain (S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of sufficiently high Schottky barrier heights. As a result, the Ge p- and n-TFETs exhibit decent electrical properties of large ON-state current and steep sub-threshold slope ($S$ factor). Especially, $I_{\rm d}$ of 0.2 $\mu$A/μm is revealed at $V_{\rm g}-V_{\rm th}=V_{\rm d}=\pm 0.5$ V for Ge pTFETs, with the $S$ factor of 28 mV/dec at 7 K.
收稿日期: 2018-07-05
出版日期: 2018-10-23
:
72.80.Cw
(Elemental semiconductors)
73.40.Gk
(Tunneling)
85.30.De
(Semiconductor-device characterization, design, and modeling)
85.30.Mn
(Junction breakdown and tunneling devices (including resonance tunneling devices))
[1] Zhang R, Huang P C, Lin J C , Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Devices 60 927 [2] Ma X, Zhang R, Sun J, Shi Y and Zhao Y 2015 Chin. Phys. Lett. 32 045202 [3] Zhang Y Y, Cheng R, Xie S, Xu S, Yu X, Zhang R and Zhao Y 2017 Chin. Phys. Lett. 34 108101 [4] Zheng Z, Yu X, Zhang Y, Xie M, Cheng R and Zhao Y 2018 IEEE Trans. Electron Devices 65 895 [5] Seabaugh A C and Zhang Q 2010 Proc. IEEE 98 2095 [6] Ionescu A M and Riel H 2011 Nature 479 329 [7] Zhang S, Liang R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504 [8] Luong G V, Narimani K, Tiedemann A T, Bernardy P, Trellenkamp S, Zhao Q T and Mantl S 2016 IEEE Electron Device Lett. 37 950 [9] Sang W K, Kim J H, Liu T J K, Choi W Y and Park B G 2016 IEEE Trans. Electron Devices 63 1774 [10] Huang R, Huang Q, Chen S, Wu C, Wang J, An X and Wang Y 2014 Nanotechnology 25 505201 [11] Leonelli D, Vandooren A, Rooyackers R, Verhulst A S, Gendt S D, Heyns M M and Guido G 2010 Jpn. J. Appl. Phys. 49 04DC10 [12] Fischer I A, Bakibillah A S M, Golve M, Hahnel D, Isemann H, Kottantharayil A and Oehme M 2013 IEEE Electron Device Lett. 34 154 [13] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743 [14] Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102 [15] Saraswat K C, Chi O C, Mohan T K, Nayfeh A and Mcintyre P 2005 Microelectron. Eng. 80 15 [16] Trumbore F A 1960 Bell Syst. Tech. J. 39 205 [17] Chroneos A and Bracht H 2014 Appl. Phys. Rev. 1 011301 [18] Bagga N, Kumar A, Bhattacharjee A and Dasgupta S 2017 Superlattices Microstruct. 109 545 [19] Toriumi A, Tabata T, Lee C H, Nishimura T, Kita K and Nagashio K 2009 Microelectron. Eng. 86 1571 [20] Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X and Huang R 2012 IEEE Electron Device Lett. 33 1687 [21] Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estévez S and Mantl S 2008 Mater. Sci. & Eng. B 154-155 168 [22] Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L, Wang P Y and Tsui B Y 2013 IEEE Electron Device Lett. 35 6 [23] An X, Fan C H, Huang R and Zhang X 2009 Chin. Phys. Lett. 26 087304 [24] Zhang R, Tang X, Yu X, Li J and Zhao Y 2016 IEEE Electron Device Lett. 37 831 [25] Lee M H, Lin J C, Wei Y T, Chen C W, Tu W H, Zhuang H K and Tang M 2013 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2013) p 4.5.1 [26] Mookerjea S, Krishnan R, Datta S and Narayanan V 2009 IEEE Electron Device Lett. 30 1102 [27] Yang Y, Han G, Guo P, Wang W, Gong X, Wang L, Low K L and Yeo Y C 2013 IEEE Trans. Electron Devices 60 4048 [28] Sajjad R N, Chern W, Hoyt J L and Antoniadis D A 2016 IEEE Trans. Electron Devices 63 4380 [29] Jiang Z, Zhuang Y Q, Li C, Wang P and Liu Y Q 2016 Chin. Phys. B 25 027701 [30] Zhang R, Huang P C, Lin J C, Takenaka M and Takagi S 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.1.1 [31] Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch N V D, Wirths S, Tiedemann A T, Trellenkamp S, Buca D, Zhao Q T and Mantl S 2016 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2016) p 22.3.1 [32] Yang Y, Su S, Guo P and Wang W 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.3.1 [33] Kazazis D, Jannaty P, Zaslavsky A, Royer C L, Tabone C, Clavelier L and Cristoloveanu S 2009 Appl. Phys. Lett. 94 263508
[1]
. [J]. 中国物理快报, 2020, 37(9): 97201-.
[2]
. [J]. 中国物理快报, 2019, 36(5): 57201-.
[3]
. [J]. 中国物理快报, 2017, 34(7): 77201-.
[4]
. [J]. 中国物理快报, 2015, 32(11): 117203-117203.
[5]
. [J]. 中国物理快报, 2015, 32(4): 45202-045202.
[6]
. [J]. 中国物理快报, 2015, 32(02): 20701-020701.
[7]
. [J]. 中国物理快报, 2014, 31(05): 58503-058503.
[8]
. [J]. 中国物理快报, 2013, 30(11): 117102-117102.
[9]
DENG Ning;TANG Jian-Shi;ZHANG Lei;ZHANG Shu-Chao;CHEN Pei-Yi. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents [J]. 中国物理快报, 2010, 27(9): 98501-098501.
[10]
XU Yue;YAN Feng;CHEN Dun-Jun;SHI Yi;WANG Yong-Gang;LI Zhi-Guo;YANG Fan;WANG Jos-Hua;LIN Peter;CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory [J]. 中国物理快报, 2010, 27(6): 67201-067201.
[11]
JIANG Ruolian;LIU Jianlin;ZHENG Youdou*;ZHENG Guozhen*;WEI Yayi*;SHEN Xuechu*. High Hole Mobility Si/Sil-x Gex /Si Heterostructure [J]. 中国物理快报, 1994, 11(2): 116-118.
[12]
LI Jianming. NOVEL SEMICONDUCTOR SUBSTRATE FO-D BY HYDROGEN ION IMPLANTATION INTO SILICON
[J]. 中国物理快报, 1989, 6(10): 458-460.