1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 2School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China 3School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 4Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China 5Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1D-14109 Berlin, Germany 6China Institute of Atomic Energy, Beijing 102413, China 7School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, United Kingdom 8National Synchrotron Radiation Research Center, Hsinchu 30077, China 9Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:As one of the most promising Kitaev quantum-spin-liquid (QSL) candidates, $\alpha$-RuCl$_3$ has received a great deal of attention. However, its ground state exhibits a long-range zigzag magnetic order, which defies the QSL phase. Nevertheless, the magnetic order is fragile and can be completely suppressed by applying an external magnetic field. Here, we explore the evolution of magnetic excitations of $\alpha$-RuCl$_3$ under an in-plane magnetic field, by carrying out inelastic neutron scattering measurements on high-quality single crystals. Under zero field, there exist spin-wave excitations near the $M$ point and a continuum near the $\varGamma$ point, which are believed to be associated with the zigzag magnetic order and fractional excitations of the Kitaev QSL state, respectively. By increasing the magnetic field, the spin-wave excitations gradually give way to the continuous excitations. On the verge of the critical field $\mu_0H_{\rm c}=7.5$ T, the former ones vanish and only the latter ones are left, indicating the emergence of a pure QSL state. By further increasing the field strength, the excitations near the $\varGamma$ point become more intense. By following the gap evolution of the excitations near the $\varGamma$ point, we are able to establish a phase diagram composed of three interesting phases, including a gapped zigzag order phase at low fields, possibly gapless QSL phase near $\mu_0H_{\rm c}$, and gapped partially polarized phase at high fields. These results demonstrate that an in-plane magnetic field can drive $\alpha$-RuCl$_3$ into a long-sought QSL state near the critical field.
Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B92 235119
[10]
Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater.15 733
Yadav R, Bogdanov N A, Katukuri V M, Nishimoto S, van den Brink J, and Hozoi L 2016 Sci. Rep.6 37925
[15]
Ran K, Wang J, Wang W, Dong Z Y, Ren X, Bao S, Li S, Ma Z, Gan Y, Zhang Y, Park J T, Deng G, Danilkin S, Yu S L, Li J X, and Wen J 2017 Phys. Rev. Lett.118 107203
Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, and Ji S 2017 Nat. Phys.13 1079
Katukuri V M, Nishimoto S, Yushankhai V, Stoyanova A, Kandpal H, Choi S, Coldea R, Rousochatzakis I, Hozoi L, and van den Brink J 2014 New J. Phys.16 013056
Chun S H, Kim J W, Kim J, Zheng H, Stoumpos C C, Malliakas C D, Mitchell J F, Mehlawat K, Singh Y, Choi Y, Gog T, Al-Zein A, Sala M M, Krisch M, Chaloupka J, Jackeli G, Khaliullin G, and Kim B J 2015 Nat. Phys.11 462
Bachus S, Kaib D A S, Tokiwa Y, Jesche A, Tsurkan V, Loidl A, Winter S M, Tsirlin A A, Valentí R, and Gegenwart P 2020 Phys. Rev. Lett.125 097203
[48]
Wolter A U B, Corredor L T, Janssen L, Nenkov K, Schönecker S, Do S H, Choi K Y, Albrecht R, Hunger J, Doert T, Vojta M, and Büchner B 2017 Phys. Rev. B96 041405
[49]
Baek S H, Do S H, Choi K Y, Kwon Y S, Wolter A U B, Nishimoto S, van den Brink J, and Büchner B 2017 Phys. Rev. Lett.119 037201
Bachus S, Kaib D A S, Jesche A, Tsurkan V, Loidl A, Winter S M, Tsirlin A A, Valentí R, and Gegenwart P 2021 Phys. Rev. B103 054440
[52]
Widmann S, Tsurkan V, Prishchenko D A, Mazurenko V G, Tsirlin A A, and Loidl A 2019 Phys. Rev. B99 094415
[53]
Tanaka O, Mizukami Y, Harasawa R, Hashimoto K, Hwang K, Kurita N, Tanaka H, Fujimoto S, Matsuda Y, Moon E G, and Shibauchi T 2022 Nat. Phys. (accepted)
[54]
Zhou X G, Li H, Matsuda Y H, Matsuo A, Li W, Kurita N, Kindo K, and Tanaka H 2022 arXiv:2201.04597 [cond-mat.str-el]
[55]
Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A A, Winn B, Liu Y, Pajerowski D, Yan J, Bridges C A, Savici A T, Chakoumakos B C, Lumsden M D, Tennant D A, Moessner R, Mandrus D G, and Nagler S E 2018 npj Quantum Mater.3 8
[56]
Balz C, Lampen-Kelley P, Banerjee A, Yan J, Lu Z, Hu X, Yadav S M, Takano Y, Liu Y, Tennant D A, Lumsden M D, Mandrus D, and Nagler S E 2019 Phys. Rev. B100 060405
Hentrich R, Wolter A U B, Zotos X, Brenig W, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B, and Hess C 2018 Phys. Rev. Lett.120 117204
[61]
Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, and Matsuda Y 2018 Nature559 227
[62]
Kasahara Y, Sugii K, Ohnishi T, Shimozawa M, Yamashita M, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, and Matsuda Y 2018 Phys. Rev. Lett.120 217205
[63]
Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Yan J, Mandrus D G, Nagler S E, and Ong N P 2021 Nat. Phys.17 915
[64]
Yokoi T, Ma S, Kasahara Y, Kasahara S, Shibauchi T, Kurita N, Tanaka H, Nasu J, Motome Y, Hickey C, Trebst S, and Matsuda Y 2021 Science373 568
Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Quirk N, Mandrus D G, Nagler S E, and Ong N P 2022 arXiv:2201.07873 [cond-mat.str-el]
[67]
Sahasrabudhe A, Kaib D A S, Reschke S, German R, Koethe T C, Buhot J, Kamenskyi D, Hickey C, Becker P, Tsurkan V, Loidl A, Do S H, Choi K Y, Grüninger M, Winter S M, Wang Z, Valentí R, and van Loosdrecht P H M 2020 Phys. Rev. B101 140410
[68]
Wellm C, Zeisner J, Alfonsov A, Wolter A U B, Roslova M, Isaeva A, Doert T, Vojta M, Büchner B, and Kataev V 2018 Phys. Rev. B98 184408
[69]
Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, and Orenstein J 2017 Phys. Rev. Lett.119 227201
Wu L, Little A, Aldape E E, Rees D, Thewalt E, Lampen-Kelley P, Banerjee A, Bridges C A, Yan J Q, Boone D, Patankar S, Goldhaber-Gordon D, Mandrus D, Nagler S E, Altman E, and Orenstein J 2018 Phys. Rev. B98 094425
[72]
Wulferding D, Choi Y, Do S H, Lee C H, Lemmens P, Faugeras C, Gallais Y, and Choi K Y 2020 Nat. Commun.11 1
Modic K A, McDonald R D, Ruff J P C, Bachmann M D, Lai Y, Palmstrom J C, Graf D, Chan M K, Balakirev F F, Betts J B, Boebinger G S, Schmidt M, Lawler J M, Sokolov D A, Moll P J W, Ramshaw B J, and Shekhter A 2021 Nat. Phys.17 240
[75]
Ponomaryov A N, Schulze E, Wosnitza J, Lampen-Kelley P, Banerjee A, Yan J Q, Bridges C A, Mandrus D G, Nagler S E, Kolezhuk A K, and Zvyagin S A 2017 Phys. Rev. B96 241107
[76]
Ponomaryov A N, Zviagina L, Wosnitza J, Lampen-Kelley P, Banerjee A, Yan J Q, Bridges C A, Mandrus D G, Nagler S E, and Zvyagin S A 2020 Phys. Rev. Lett.125 037202
[77]
Gass S, Cônsoli P M, Kocsis V, Corredor L T, Lampen-Kelley P, Mandrus D G, Nagler S E, Janssen L, Vojta M, Büchner B, and Wolter A U B 2020 Phys. Rev. B101 245158
[78]
Schönemann R, Imajo S, Weickert F, Yan J, Mandrus D G, Takano Y, Brosha E L, Rosa P F S, Nagler S E, Kindo K, and Jaime M 2020 Phys. Rev. B102 214432
Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, and Nagler S E 2017 Science356 1055
[81]
Ran K, Wang J, Bao S, Cai Z, Shangguan Y, Ma Z, Wang W, Dong Z Y, Čermák P, Schneidewind A, Meng S, Lu Z, Yu S L, Li J X, and Wen J 2022 Chin. Phys. Lett.39 027501
[82]
Wu C M, Deng G, Gardner J S, Vorderwisch P, Li W H, Yano S, Peng J C, and Imamovic E 2016 J. Instrum.11 P10009
[83]
Ma Z, Dong Z Y, Wang J, Zheng S, Ran K, Bao S, Cai Z, Shangguan Y, Wang W, Boehm M, Steffens P, Regnault L P, Wang X, Su Y, Yu S L, Liu J M, Li J X, and Wen J 2021 Phys. Rev. B104 224433