Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms
Yi-Hong Li1 , Shao-Hua Li1 , Jin-Peng Yuan1,2** , Li-Rong Wang1,2** , Lian-Tuan Xiao1,2 , Suo-Tang Jia1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 0300062 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Abstract :Double resonance optical pumping spectroscopy has an outstanding advantage of high signal-to-noise ratio, thus having potential applications in precision measurement. With the counter propagated 780 nm and 776 nm laser beams acting on a rubidium vapor cell, the high resolution spectrum of $5S_{1/2}-5P_{3/2}-5D_{5/2}$ ladder-type transition of $^{87}$Rb atoms is obtained by monitoring the population of the $5S_{1/2}$ ground state. The dependence of the spectroscopy lineshape on the probe and coupling fields are comprehensively studied in theory and experiment. This research is helpful for measurement of fundamental physical constants by high resolution spectroscopy.
收稿日期: 2018-05-22
出版日期: 2018-08-29
:
32.10.Fn
(Fine and hyperfine structure)
32.70.Fw
(Absolute and relative intensities)
32.70.Jz
(Line shapes, widths, and shifts)
[1] Argence B, Chanteau B, Lopez O, Nicolodi D, Abgrall M, Chardonnet C, Daussy C, Darquié B, Coq Y L and Amy-Klein A 2015 Nat. Photon. 9 456 [2] Riehle F 2017 Nat. Photon. 11 25 [3] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K and Hu S M 2017 Phys. Rev. Lett. 119 263002 [4] Yan M, Luo P L, Iwakuni K, Millot G, Hänsch T W and Picqué N 2017 Light: Sci. Appl. 6 17076 [5] Ding D S, Zhou Z Y and Shi B S 2012 Chin. Phys. Lett. 29 024202 [6] Tsai C C, Bahns J T, Whang T J, Wang H, Stwalley W C and Lyyra A M 1993 Phys. Rev. Lett. 71 1152 [7] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [8] Moon H S, Lee W K and Lee L 2004 Appl. Phys. Lett. 85 3965 [9] Lee W K, Moon H S and Suh H S 2007 Opt. Lett. 32 2810 [10] Moon H S, Lee W K and Suh H S 2009 Phys. Rev. A 79 062503 [11] Wang J, Liu H F, Yang G, Yang B D and Wang J M 2014 Phys. Rev. A 90 052505 [12] Yang B D, Zhao J Y, Zhang T C and Wang J M 2009 J. Phys. D 42 085111 [13] Talker E, Stern L, Naiman A, Barash Y and Levy U 2017 J. Phys. Commun. 1 055016 [14] Becerra F E, Willis R T, Rolston S L and Orozco L A 2008 Phys. Rev. A 78 013834 [15] Cao S K, Fan P R, Zhang Y C, Wang L R, Xiao L T and Jia S T 2016 Chin. Phys. Lett. 33 023201 [16] Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201 [17] Li S H, Li Y H, Yuan J P, Wang L R, Xiao L T and Jia S T 2018 Chin. Opt. Lett. 16 060203 [18] Ye J, Swartz S and Jungner P 1996 Opt. Lett. 21 1280 [19] Grove T T, Sanchez-Villicana V, Duncan B C, Maleki S and Gould P L 1995 Phys. Scr. 52 271 [20] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Opt. Express 25 33580 [21] Shore B W 1990 The Theory of Coherent Atomic Excitation (New York: Wiley-Interscience) [22] Noh H R and Moon H S 2009 Phys. Rev. A 80 022509 [23] He Z S, Tsai J H, Chang Y Y, Liao C C and Tsai C C 2013 Phys. Rev. A 87 033402
[1]
. [J]. 中国物理快报, 2020, 37(7): 73201-.
[2]
. [J]. 中国物理快报, 2019, 36(4): 43201-.
[3]
. [J]. 中国物理快报, 2018, 35(12): 129901-.
[4]
. [J]. 中国物理快报, 2018, 35(8): 83201-.
[5]
. [J]. 中国物理快报, 2017, 34(7): 73201-.
[6]
. [J]. 中国物理快报, 2017, 34(1): 13201-013201.
[7]
. [J]. 中国物理快报, 2016, 33(11): 113201-113201.
[8]
. [J]. 中国物理快报, 2016, 33(09): 94205-094205.
[9]
. [J]. 中国物理快报, 2016, 33(06): 63701-063701.
[10]
. [J]. 中国物理快报, 2016, 33(05): 53201-053201.
[11]
. [J]. 中国物理快报, 2016, 33(02): 23201-023201.
[12]
. [J]. 中国物理快报, 2014, 31(09): 93101-093101.
[13]
. [J]. 中国物理快报, 2014, 31(06): 63201-063201.
[14]
. [J]. 中国物理快报, 2013, 30(10): 103201-103201.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(2): 23201-023201.