Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach
Shao-Yang Dai1 , Kun-Qian Li1 , Yue-Yang Zhai1** , Wei Xia2 , Qing Wang1 , Wei Xiong1 , Xiang-Hui Qi1 , Xu-Zong Chen1**
1 Institute of Quantum Electronics, School of Electronics Engineering and Computer Sciences, Peking University, Beijing 1008712 Jiangsu Key Laboratory on Opto-electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046
Abstract :The optical frequency comb has been widely used in precision measurement. In this study, a multi-peak fitting approach is first proposed to fit the two-photon transition spectrum which overlaps with the neighboring transition in $^{87}$Rb. The multi-peak fitting approach is used to eliminate the frequency shift affected by the neighboring transition. With locking the carrier envelope offset frequency at 1/4 repetition frequency, the transition frequency is measured to be 770569132739.9$\pm$5.8 kHz, which agrees well with the previous result recommended by Comité International des Poids et Mesures.
收稿日期: 2016-08-24
出版日期: 2016-12-29
:
32.10.Fn
(Fine and hyperfine structure)
32.30.Jc
(Visible and ultraviolet spectra)
32.70.Jz
(Line shapes, widths, and shifts)
32.80.Rm
(Multiphoton ionization and excitation to highly excited states)
引用本文:
. [J]. 中国物理快报, 2017, 34(1): 13201-013201.
Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach. Chin. Phys. Lett., 2017, 34(1): 13201-013201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/1/013201
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I1/13201
[1] Bernard J E, Madej A A, Siemsen J K, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Têtu M 2000 Opt. Commun. 173 357 [2] Jones D J, Diddams S A, Ranka, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635 [3] Xia W and Chen X Z 2016 Meas. Sci. Technol. 27 041001 [4] Pandey K, Kumar P V K, Suryanarayana M V and Natarajan V 2008 Opt. Lett. 33 1675 [5] Marian A, Stowe M C, Felinto D and Ye J 2005 Phys. Rev. Lett. 95 023001 [6] Chui H C, Ko M S, Liu Y W, Shy J T, Peng J L and Ahn H 2005 Opt. Lett. 30 842 [7] Gerginov V, Tanner C E, Diddams S A, Bartels A and Hollberg L 2005 Opt. Lett. 30 1734 [8] Wolf A L, Berg S A, Ubachs W and Eikema K S E 2009 Phys. Rev. Lett. 102 223901 [9] Marian A, Stowe M C, Lawall J R, Felinto D and Ye J 2004 Science 306 2063 [10] Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007 [11] Dai S Y, Xia W, Zhang Y, Zhao J Y, Zhou D W, Wang Q, Yu Q, Li K Q, Qi X H and Chen X Z 2016 Opt. Commun. 378 35 [12] Zhang S Y, Wu J T, Zhang Y L, Leng J X, Yang W P, Zhang Z G and Zhao J Y 2015 Sci. Rep. 5 15114 [13] Dudovich N, Dayan B, Gallagher Faeder S M and Silberberg Y 2001 Phys. Rev. Lett. 86 47 [14] Wu J T, Hou D, Qin Z Y, Zhang Z G and Zhao J Y 2014 Phys. Rev. A 89 041402 [15] Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201 [16] Lee W K and Moon H S 2015 Phys. Rev. A 92 012501 [17] Hou D, Wu J T, Zhang S Y, Ren Q S, Zhang Z G and Zhao J Y 2014 Appl. Phys. Lett. 104 111104 [18] Cao S K, Fan P R, Zhang Y C, Wang L R, Xiao L T and Jia S T 2016 Chin. Phys. Lett. 33 023201 [19] Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201 [20] Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H and Wei Z Y 2015 Chin. Phys. B 24 024213 [21] Liu W L, Xu R D, Wu J Z, Yang J X, Lukashov S S, Sovkov V B, Dai X C, Ma1 J, Xiao L T and Jia S T 2015 J. Chem. Phys. 143 124307 [22] Ma J, Wu J Z, Chen G, Fan Q C, Feng H, Dai X C, Sun W G, Xiao L T and Jia S T 2013 J. Phys. Chem. Lett. 4 3612 [23] Hu C Y, Liu W L, Xu R D, Wu J Z, Ma J, Xiao L T and Jia S T 2015 Acta Phys. Sin. 64 143302 [24] Inaba H, Daimon Y, Hong F L, Onae A, Minoshima K, Schibli T R, Matsumoto H, Hirano M, Okuno T, Onishi M and Nakazawa M 2006 Opt. Express 14 5223 [25] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F and Jørgensen C G 2004 Opt. Lett. 29 250 [26] Bjorkholm J and Liao P 1976 Phys. Rev. A 14 751 [27] Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L and Tanner C E 2010 Phys. Rev. A 81 043840 [28] Baklanov Y V and Chebotayev V P 1977 Appl. Phys. 12 97 [29] Fendel P, Bergeson S D, Udem T and Hänsch T W 2007 Opt. Lett. 32 701 [30] Moutzouris K, Sotier F, Adler F and Leitenstorfer A 2006 Opt. Express 14 1905 [31] Okubo S, Onae A, Hosaka K, Sera H, Inaba H and Hong F L 2015 Appl. Phys. Express 8 112402 [32] Nez F, Biraben F, Felder R and Millerioux Y 1993 Opt. Commun. 102 432 [33] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q. 23 309 [34] Poulin M, Latrasse C, Touahri D and Têtu M 2002 Opt. Commun. 207 233 [35] Farley J W and Wing W H 1981 Phys. Rev. A 23 2397 [36] Felder R, Touahri D, Acef O, Hilico L, Zondy J J, Clairon A, Beauvoir B D, Biraben F, Julien L, Nez F and Millerioux Y 1995 Proc. SPIE 2378 52
[1]
. [J]. 中国物理快报, 2020, 37(7): 73201-.
[2]
. [J]. 中国物理快报, 2019, 36(4): 43201-.
[3]
. [J]. 中国物理快报, 2018, 35(12): 129901-.
[4]
. [J]. 中国物理快报, 2018, 35(9): 93201-.
[5]
. [J]. 中国物理快报, 2018, 35(8): 83201-.
[6]
. [J]. 中国物理快报, 2017, 34(7): 73201-.
[7]
. [J]. 中国物理快报, 2016, 33(11): 113201-113201.
[8]
. [J]. 中国物理快报, 2016, 33(09): 94205-094205.
[9]
. [J]. 中国物理快报, 2016, 33(06): 63701-063701.
[10]
. [J]. 中国物理快报, 2016, 33(05): 53201-053201.
[11]
. [J]. 中国物理快报, 2016, 33(02): 23201-023201.
[12]
. [J]. 中国物理快报, 2014, 31(09): 93101-093101.
[13]
. [J]. 中国物理快报, 2014, 31(06): 63201-063201.
[14]
. [J]. 中国物理快报, 2013, 30(10): 103201-103201.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(2): 23201-023201.